
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

ARCHITECTURES FOR DEVICE AWARE NETWORK

by

Peng Leong Seah
and

Wai Kong Chung

March 2005

Thesis Advisor: Gurminder Singh
Thesis Co-Advisor: Su Wen

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I March 2005 Master's Thesis

4. TITLE AND SUBTITLE: Architectures for Device Aware Network 5. FUNDING NUMBERS

6. AUTHOR(S) Peng Leong Seah and Wai Kong Chung
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited
13. ABSTRACT (maximum 200 words)

In today's heterogeneous computing environment, a wide variety of computing devices with varying capabilities

need to access information in the network. Existing network is not able to differentiate the different device capabilities, and

indiscriminatingly send information to the end-devices, without regard to the ability of the end-devices to use the information.

The goal of a device-aware network is to match the capability of the end-devices to the information delivered,

thereby optimizing the network resource usage. In the battlefield, all resources - including time, network bandwidth and

battery capacity - are very limited. A device-aware network avoids the waste that happens in current, device-ignorant

networks. By eliminating unusable traffic, a device-aware network reduces the time the end-devices spend receiving extraneous

information, and thus saves time and conserves battery-life.

In this thesis, we evaluated two potential DAN architectures, Proxy-based and Router-based approaches, based on the

key requirements we identified. To demonstrate the viability of DAN, we built a prototype using a hybrid of the two

architectures. The key elements of our prototype include a DAN browser, a DAN Lookup Server and DAN Processing Unit

(DPU). We have demonstrated how our architecture can enhance the overall network utility by ensuring that only appropriate

content is delivered to the end-devices.

14. SUBJECT TERMS 15. NUMBER OF
Device Aware Network, Content Re-purposing, Heterogeneous Device, Capability Matching, Web PAGES
Proxy, Web Browser, Device Profile. 101

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

ARCHITECTURES FOR DEVICE AWARE NETWORK

Peng Leong Seah
Civilian, Ministry of Defense, Singapore

B. Eng. (Hons), National University of Singapore, 1996

Wai Kong Chung
Civilian, Ministry of Defense, Singapore

B. Eng. (Hons), Nanyang Technological University, Singapore, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Authors: Peng Leong Seah

Wai Kong Chung

Approved by: Gurminder Singh
Thesis Advisor

Su Wen
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

In today's heterogeneous computing environment, a wide variety of computing

devices with varying capabilities need to access information in the network. Existing

network is not able to differentiate the different device capabilities, and

indiscriminatingly send information to the end-devices, without regard to the ability of

the end-devices to use the information.

The goal of a device-aware network is to match the capability of the end-devices

to the information delivered, thereby optimizing the network resource usage. In the

battlefield, all resources - including time, network bandwidth and battery capacity - are

very limited. A device-aware network avoids the waste that happens in current, device-

ignorant networks. By eliminating unusable traffic, a device-aware network reduces the

time the end-devices spend receiving extraneous information, and thus saves time and

conserves battery-life.

In this thesis, we evaluated two potential DAN architectures, Proxy-based and

Router-based approaches, based on the key requirements we identified. To demonstrate

the viability of DAN, we built a prototype using a hybrid of the two architectures. The

key elements of our prototype include a DAN browser, a DAN Lookup Server and DAN

Processing Unit (DPU). We have demonstrated how our architecture can enhance the

overall network utility by ensuring that only appropriate content is delivered to the end

devices.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

INTRODUCTION ... 1
A. BACKGROUND .. 1
B. PURPOSE OF STUDY ... 2
C. ORGANISATION OF THESIS .. 3

H. BACKGROUND STUDY ... 5
A. CHAPTER OVERVIEW .. 5
B. RELEVANT TECHNOLOGIES AND IMPLEMENTATIONS 5

1. JINI Technology ... 5
2. Content Repurposing .. 7

C. REQUIREMENTS STUDY .. 9
1. User Case Model Survey ... 9

a. Actors .. 9
b. Overview of Use Cases .. 10
c. Use Case Diagram .. 12

HI. ARCHITECTURES FOR DEVICE-AWARE NETWORK 15
A. CHAPTER OVERVIEW .. 15
B. KEY DESIGN CONSIDERATIONS .. 15

1. No Additional Hardware ... 15
2. Minimal Changes to Server and Client Software 15
3. Little or No Human Intervention Required 16
4. Maximize Efficiency for Constrained Devices 16
5. Accommodation for Heterogeneous Devices 16

C. PROXY-BASED APPROACH ... 17
1. Overview of Proxy-Based Approach ... 17
2. Salient Features of Proxy-Based Approach 19
3. Design Analysis of Proxy-Based Approach 19

a. Device Registration ... 19
b. Service Registration ... 20
c. Joining the Network ... 20
d. Lookup Service .. 20
e. Repurpose Content.. 20
f Survey Device/Network Status ... 21
g. Session Initiation ... 21
h. Capability Negotiation .. 21

D. ROUTER-BASED APPROACH ... 21
1. Overview of Router-Based Approach .. 21
2. Salient Features of Router-Based Approach 22
3. Design Analysis of Router-Based Approach 23

a. Device Registration ... 23
b. Service Registration ... 23

vii

c. Joining the Network ... 24
d. Lookup Service.. 24
e. Repurpose Content.. 24
f Session Initiation ... 24
g. Capability Negotiation 25

E. SUMMARY .. 25

IV. PROTOTYPE DEVELOPMENT 27
A. CHAPTER OVERVIEW ... 27
B. PROTOTYPE OVERVIEW 27

1. Objective of Developing Prototype ... 27
2. Challenges for Client Device .. 28
3. Challenges for DPU Prototype.. 28

C. PROTOTYPE DESIGN .. 29
1. Design Overview... 29

a. Lookup Server Discovery.. 31
b. Lookup for DPU for a Particular URL 31
c. Client Connects to Web Server ... 31
d. Update of Dynamic Client Status 32

2. Communication Messages ... 32
a. Discovery Message ... 32
b. DPU Lookup Message .. 33
c. DPU Update Message .. 34
d. Activate DPU Message ... 34
e. Status Update Message .. 35

3. Client Design ... 35
a. DocBrowser Class ... 35
b. DiscoveryMgr Class ... 37
c. WininetMgr Class ... 37
d. FrmConnection Class .. 38

4. Lookup Server Design ... 39
a. CommsManager Class .. 40
b. ServerInfo Class .. 41
c. LookupServer Class ... 42

5. DPU Design .. 43
a. JarClassLoader Class .. 45
b. PolicyInfo Class ... 45
c. PolicyManager Class .. 46
d. DanProcessingUnit Class .. 47

D. IMPLEMENTATION DETAILS ... 50
1. Implementing DAN Browser .. 50
2. Configuring Proxy for DAN Browser .. 53
4. Modifications to the RabbIT Web Proxy 57

a. New Input Argument to Specify the Port for the RabbIT
Web Proxy ... 57

b. New Image Handler Classes ... 58

viii

c. Policy Handling 61
E. DEMONSTRATED CAPABILITY 64

1. Prototype Setup ... 65
2. Prototype Demonstration 66

a. PDA in Normal Mode ... 68
b. PDA in DAN Mode ... 69
c. Cell Phone in DAN Mode .. 69
d. Notebook in DAN Mode with High! Moderate Battery

Level ... 70
e. Notebook in DAN Mode with Low Battery Level 71

V. CONCLUSIONS .. 73
A. CHAPTER OVERVIEW .. 73
B. LESSONS LEARNT .. 73

1. Setting Proxy for Pocket Internet Explorer 73
2. Dynamic Downloading and Execution of Codes 76

C. KNOWN ISSUES .. 76
1. Configuring DAN Browser for Session-based DPUs 76
2. Retrieving DPU Information for Web Links and Redirected

W eb Sites .. 77
D. RECOMMENDATIONS ... 77

1. Router-based DAN Protocol .. 77
2. DAN as a Web Service .. 78
3. Security in DAN Information Exchange 78

E. SUMMARY ... 78

LIST OF REFERENCES ... 81

INITIAL DISTRIBUTION LIST .. 83

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF FIGURES

Figure 1. Client-based Content Repurposing (After Ref. [13]) 7
Figure 2. Server-based Content Repurposing (After Ref. [13]) 8
Figure 3. Server-based Content Repurposing (After Ref. [13]) 8
Figure 4. Use Case Diagram for Device Aware Network Framework 13
Figure 5. Schematic Diagram of Proxy-based Design ... 18
Figure 6. Schematic Diagram of Router-based Design ... 22
Figure 7. Sequence Diagram for DAN Framework Prototype 30
Figure 8. DTD for DpuProxyLookup.xml .. 39
Figure 9. DTD for Policies.xml ... 46
Figure 10. Prototype Setup ... 66
Figure 11. The D AN Brow ser .. 67
Figure 12. Options for Device Class ... 67
Figure 13. Options for Battery Status ... 68
Figure 14. PDA in Normal Mode - Full Image .. 68
Figure 15. PDA in DAN Mode - Reduced Resolution Image 69
Figure 16. Cell Phone in DAN Mode -No Image .. 70
Figure 17. High/Moderate Battery Level - Full Image ... 70
Figure 18. Low Battery Level - Reduced Resolution Image 71

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

Table 1. List of A ctors ... 10
Table 2. List of U se Cases .. 12
Table 3. Message Fields for the Discovery Message ... 33
Table 4. Message Fields for the DPU Lookup Message ... 33
Table 5. Message Fields for the DPU Update Message ... 34
Table 6. Message Fields for the Activate DPU Message .. 34
Table 7. Message Fields for the Status Update Message ... 35
Table 8. Key Attributes of the DocBrowser Class .. 36
Table 9. Key Attributes of the DiscoveryMgr Class .. 37
Table 10. Key Attributes of the WininetMgr Class .. 38
Table 11. Key Attributes of the FrmConnection Class ... 38
Table 12. Key Attributes of the CommsManager Class .. 41
Table 13. Key Attributes of the ServerInfo Class .. 41
Table 14. Key Attributes of the LookupServer Class ... 43
Table 15. Mapping for Device Type to Policy ... 44
Table 16. Policy for Device Type when the Battery Level is Below Threshold 44
Table 17. Key Attributes of the JarClassLoader Class ... 45
Table 18. Key Attributes of the Policylnfo Class .. 45
Table 19. Key Attributes of the PolicyManager Class .. 47
Table 20. Key Attributes of the DanProcessingUnit Class .. 49
Table 21. Registry Entry for Pocket IE (Select) .. 74

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

ACKNOWLEDGMENTS

We would like to express our heartfelt thanks to the following people for their

kind support and assistance that leads to the successful completion of this joint thesis.

Many thanks to Prof. Gurminder Singh and Prof. Su Wen for their helpful advice

and directions. Their guidance and encouragement kept us on track throughout our

endeavor.

We would also like to thank Mr. Arijit Das and Mr. John Gibson for providing the

necessary resources and valuable inputs during our numerous group discussions.

Finally, to our families and friends for your never-ending support and patience.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

I. INTRODUCTION

A. BACKGROUND

In today's heterogeneous computing environment, there exists a wide variety of

computing devices with varying capabilities that need to access information in the

network. These devices (e.g., Personal Digital Assistant (PDA), desktop computer,

notebook computer, cell phone and a host of networked embedded systems) may have

extremely differing capabilities and resources to retrieve and display the information

from the network. In addition, such devices may be connected to the network through

various means, each with differing capacity and bandwidth. As a result, one form of

information apt for a particular class of device in a particular network environment may

not be optimal for other classes of device in another networking environment.

Unfortunately, the network we have today is not designed to address such

disparities that exist among the end devices. The network is like dumb pipes, one which

simply route the data packets to the requesting devices, without regard for the device's

ability to use such data packets. As a result, end device may end up wasting resources

retrieving information it cannot use from the inert network. This is especially critical for

constrained devices (e.g., PDA, cell phone) which have relatively limited resources. For

example, in the case of a PDA retrieving a large image from a server, the resources

required to process the large amount of data received from the server may exceed the

capability of the PDA. This may result in the PDA discarding the received data or the

PDA committing too much of its resources to display the image, causing it to "crash". In

both cases, resources such as processor time cycle, memory and battery power of the

PDA are wasted to process unusable data. Moreover, the network also spends a

significant portion of its resource to transport and process unnecessary traffic [13].

The root of the resource wastage issue is due to the current network not able to

distinguish contents that are not suitable for the end devices. A possible solution is to

enhance the network capability to make it aware of the end devices capabilities. Known

as a Device Aware Network (DAN), DAN matches the content of the data with the

capability of the destination end device. If the data is deemed unusable, DAN will

1

prevent the data from entering the network or transform it to a format that the end device

can process. Therefore a DAN avoids the inefficiencies that consume unnecessary end

device and network resources. Although a DAN works well in a wired network, its

strength lies in providing an efficient environment for wireless and mobile applications

where the resources - both the network and end devices - are limited [13].

B. PURPOSE OF STUDY

In this thesis, we study the use of a DAN framework to enhance the efficiency of

a network so that it is able to distinguish the capabilities of end devices. By doing so, it

is able to deliver the appropriate information to the end device and prevent wastage of

resources.

The first phase of the study involves performing background study. During this

phase, we will research and study those technologies that are relevant to the DAN

framework. We intend to harness the strengths of various approaches and technologies to

develop the DAN framework. We will also conduct a requirements study for the DAN

framework to identify the broad functionalities required.

The next phase of the thesis involves drafting architecture designs for the DAN

framework. The artifacts from the background study should provide us with sufficient

knowledge and familiarity to propose various architecture approaches. We will also

perform requirements analysis on the proposed designs.

Finally, the last phase requires us to develop a prototype of the DAN framework

to demonstrate its conceptual viability. We shall harness the strengths of the various

designs, and create the blueprint upon which we build the prototype. This will be

followed by the development of a skeletal prototype of the DAN framework. The thesis

culminates with a prototype demonstration to verify the concept of the DAN framework.

2

C. ORGANISATION OF THESIS

The organization of the thesis follows closely to the various phases of work

identified in the previous section.

Chapter II discusses the various key technologies that are relevant to the DAN

framework. It will also document the requirements artifacts that highlight the key

functionalities of the DAN framework, as well as defining the scope of the DAN

framework.

Chapter III proposes the alternative designs for the DAN framework. It first

identifies the various design considerations upon which the designs were derived from.

Subsequently, it describes each design, and discusses their salient features. A critical

analysis of each design against the requirements is also conducted.

Chapter IV documents the prototype implementation. The chapter begins with an

analysis of the challenges involved in designing and building the prototype. It discusses

the DAN framework design as well as the implementation. Finally, it documents the

result of the prototype demonstration.

Chapter V summaries the issues and lessons learnt we gathered throughout the

thesis work, especially the prototype implementation.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. BACKGROUND STUDY

A. CHAPTER OVERVIEW

This chapter begins with a discussion on technologies that are relevant to the

development of a DAN framework, and then continues to list the functional requirements

of DAN framework, which is compiled as a result of the requirement study.

B. RELEVANT TECHNOLOGIES AND IMPLEMENTATIONS

This section briefly describes those technologies that are relevant to DAN.

1. JINI Technology

Jini is a distributed computing technology that builds upon the existing Java

application environment. It extends the Java application environment from a platform-

centric to a network-centric environment. The Java application environment is a good

candidate for distributed computing due to its ability to move both code and data from

machine to machine. It also capitalized on Java's security and strong typing features that

enables Java classes to be run, with confidence, on a virtual machine even when a class

does not reside physically on that machine. The result is a networked system that allows

objects to transit from machines to machines and codes be executed in any part of a Jini

network [1].

The central theme of Jini is the notion of a service. Members of a Jini system,

consisting of hardware devices or software components, which provide some

functionality, can be deemed as a service. In a Jini system, different services may

federate to perform a certain task. Examples of Jini services include, among all things,

devices like printer, fax machines or hard disk for storage; software such as applications

or utilities; information from database server or data files [1]. Programmatically, a

service is declared as a Java Language interface that defines operations that can be

provided by the service. In most cases, it is also be identified by this interface [2]. Based

on this interface, different vendors or service providers can implement the same services

using different Java implementation.

5

A Jini system, also known as a federation, is made up of clients (service

consumers) and services (service providers), all communicating using the Jini protocol

(based on the Java Remote Invocation mechanism) [2]. For a service to be used by a

client, it must first register itself with a lookup service. The lookup service serves as a

central repository for all the available services within a federation. The registration of

service can be accomplished in the following ways. If the service provider knows the

location of the lookup service, it can send a unicast message to the lookup server and

register itself with the server. If the location is not known by the service provider, it can

send a UDP multicast to discover the lookup server. If there is a lookup server listening

to the request, it will response to the service provider request and the registration can take

place [2]. This is, in Jini terms, known as the discovery process.

Once the location of the lookup service is discovered, the service is ready to join

the federation. To begin the join process, a service object for the service is created and

loaded onto the lookup service. The service object consists of the Java Language

interface that defines the methods a client can invoke as well as other attributes that

describes the services [1]. From this point onwards, any client who wishes to connect to

the service can locate it using the discovery mechanism discussed above. The lookup

service, in turn, will return a copy of the service object to the client via a network when it

receives the lookup request. The service object will run in the Java runtime environment

of the client and acts as a proxy for the requested service. All interactions between the

client and the service are made via the service object.

The discovery mechanism in Jini is an example to provide location transparency

for servers or services. In a Device Aware Network (DAN), we could adapt this concept

to make the location of DAN related resources variable. Location related information,

such as IP address of DAN resources can be stored in a lookup server. A client can

perform a lookup for the location of the DAN resources before accessing these resources.

6

2. Content Repurposing

With the proliferation of wireless mobile devices and advances in wireless

communications, web contents are widely accessed by a large variety of devices, other

than the traditional desktop and notebook computers. Devices like Personal Digital

Assistant (PDA), cell phones, etc, have become a convenience means for mobile users to

access the World Wide Web. However, due to the limited display real estate of these

mobile devices, most contents designed for the web are not optimized for display on

these low resolution screens.

Content re-purposing is one of the possible techniques to tackle with the issue of

providing the right type of data to the right device. The central idea in content re-

purposing is to maintain a single copy of the content and automatically perform in real

time to repurpose the content to the required format that is optimized for a certain

category of client devices [3]. Several approaches to content re-purposing have been

proposed and implemented, namely the client-based, server-based and proxy-based

approach.

In the client-based approach, the content is delivered to the client even though the

client is incapable of displaying the content. Some pre-processing is required to

repurpose the content so that it can be displayed meaningfully by the client. The

advantage of this approach is that the server and the existing infrastructure do not need to

be modified when new devices are introduced. However, many devices are limited in the

computational power. In most case, the content may not be able to be displayed by the

client, even though an attempt to repurpose by the client is made. For example, high

resolution video may overwhelm a device powered by a slow processor. Moreover, the

network bandwidth is wasted to transfer unusable data.

Requests

Content
Client

Server

Figure 1. Client-based Content Repurposing (After Ref. [13])
7

The server-based approach involves the source of the content to perform the

necessary repurposing tasks. The server, being more resourceful, can transform the data

format with ease. It can also decide that if no available format is suitable for the

requesting client, it can stop sending the content altogether. This will prevent

unnecessary network traffic as we have seen in the client approach. However, the

drawback is that this will involve modifications on servers to achieve this.

Device Capability Specs, RequestsIN, %

Adapted Content

Client

Server

Figure 2. Server-based Content Repurposing (After Ref. [13])

The proxy-based approach is deemed to be in the middle ground between the

client- and server-based approaches. It can off load the repurposing tasks from the server

and hence does not require any changes to the server's configuration. Similar to the

server-based approach, the proxy can also stop any unusable content by the client from

becoming part of the network traffic. On the other hand, the proxy-based approach

requires an additional hop before the content is delivered to the client. This will incur

additional delay for the total time taken to deliver the content.

D ev i ce Capa bili11t y p-CS, s e-gj ves-tjsrR e

Adapted Content ontent
Client

Proxy Server

Figure 3. Server-based Content Repurposing (After Ref. [13])

For the case of a DAN, the proxy-based approach is preferred as it does not

require existing servers to make any changes. Moreover, using a proxy will give the

flexibility to develop a new protocol to support DAN without worrying about the DAN

protocol co-existing with other protocols.

8

C. REQUIREMENTS STUDY

We conduct a requirements study to gather the functional requirements of the

DAN framework. The objective of this study is to help us better understand what is

required of the DAN framework, and it shall serve as a reference for the subsequent

phases of thesis work. We felt that this is necessary as DAN is a relatively new concept,

and it would help the team to align our works. We have chosen Use-Case methodology

for this study.

As our purpose is not to gather comprehensive requirements typical in software

development cycle, we will only attempt to capture the relatively broad requirements.

Specifically, we will only perform up to use case model survey, which will capture the

broad overview of the use cases (i.e., key functional requirements), actors and the

framework's scope.

1. User Case Model Survey

a. Actors

The actors represent external entities that will interact with the DAN

framework. They have been identified to ensure that the requirements gathered during

this phase are as complete and accurate as possible.

Actor Description

Client Refers to any user who use computing devices (e.g., desktop

computer, notebook, PDA, cell phone) to retrieve information

from information servers through the network.

Information Server Refers to any devices that are able to supply the information

required by client terminals through the network.

Network Refers to the infrastructure that interconnects client terminals

and information servers for the purpose of data exchange.

That is, its enable the client terminals to request for

information from information servers and for the latter to

response with the requested information back to the

9

Actor Description

requesting client terminal. The network may be wired or

wireless, internet or intranet.

Service Provider Refers to a node in the network that is capable of providing

relevant services to complement the DAN framework, such as

repurpose specialized content, and perform capability

matching. The service provider may either perform the tasks

directly, or provide the necessary software artifacts to the

DAN framework for processing.

DAN Processing Unit Refers to the intermediary nodes, which reside on the

(DPU) network, to facilitate information exchange between client

terminals and information servers in an efficient manner.

Table 1. List of Actors

b. Overview of Use Cases

The following uses cases were identified for DAN. These use cases,

which represent the essential DAN functions, serve as a functional abstraction for the

subsequent design and prototype implementation phases.

Use Case Description

Register Device The use case begins when a client register a new device to the

DAN framework to upload the device's profile and user

preference to the framework prior to initiating a session to the

information server. This information will be used by the

framework to perform capability matching. The device

profile uploaded may be dynamic or static. Unlike dynamic

profile (e.g., battery level, network media), static device

profile (e.g., device class, display resolution and multi-media

capabilities) does not change over time. User preference may

also be uploaded to provide personalized level of content

10

Use Case Description

repurposing.

Register Service The use case begins when a service provider registers the

service it is able to provide to the DAN framework. Such

supplementary services include request forwarding, content

repurposing and capability matching.

Join Network The use case begins when a client device joins the DAN

framework. Both the DAN framework and the device shall be

appropriately initialized to prepare the DAN framework to

service the device in the current environment. This

initialization is performed prior to the client device initiating a

session to the information server.

Lookup Service The use case begins when a client device needs to look up for

an appropriate component of the DAN framework. The

lookup may be explicit or implicit. In the former, the

components may be located through explicit exchange of

messages with the DAN framework (i.e., Lookup Server). In

the latter, a built-in mechanism helps to locate the component

without any additional message exchange (i.e., components

are located when the client sends request for information to

the information server).

Repurpose Content The use case begins after the DAN framework determines that

there the client device is not able to use the content returned

by the information server, or that the user only requires a

subset of the content. It will attempt to repurpose the content

according to specific business rules and user preferences so as

to reconcile the differences. This may be through some

published services or generic rules.

Survey Device/Network The use case begins prior to content repurposing. The DAN

11

Use Case Description

Status framework will survey the network, as well as probing the

client device dynamic profile to determine if they can support

the transportation and utilization of the information to be

delivered.

Initiate Session The use case begins when a client device tries to connect to a

information server. The DAN framework may attempt to

negotiate a compatible protocol to facilitate the content

retrieval. This is especially useful for cases when the client

device only supports very limited protocols (e.g., embedded

system, which does not support the HTTP standard), tries to

get information from internet).

Negotiate Capability The use case begins before the DAN framework forwards the

(or Capability Matching) requested information from the information server to the

requesting client device. The DAN framework will determine

if the content matches both the capability of the client device,

and the user's preferences.

Locate Mobile Device The use case begins when DAN framework needs to locate a

specified client device to deliver the request content (e.g.,

deliver subscribed periodical message).

Table 2. List of Use Cases

c. Use Case Diagram

The diagram below depicts the interaction between the actors and the use

cases. The rectangle depicts the scope of DAN framework, while the individual eggs

represent the key functions (i.e., use case). The actors are represented outside the DAN

framework as they are external to the development of the DAN framework. The

interaction between the actors and uses cases are represented by the lines that connect

them.

12

For the purpose of this thesis work, we will not be proceeding to the

detailed Use Case specifications. The following design and implementation phases will

be guided by the broad requirements specified in the Use Case Model Survey. This is to

allow us to proceed rapidly to the implementation phase to evaluate the alternative

designs, and provide a proof of concept of the DAN framework.

Device Aware Netwo Framework

isle-Loku Service,4 Su v

Figure 4. Use Case Diagram for Device Aware Network Framework

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

III. ARCHITECTURES FOR DEVICE-AWARE NETWORK

A. CHAPTER OVERVIEW

This chapter discusses the architectures for a DAN framework. It first presents

the key design considerations in order to fulfill the DAN requirements. This is followed

by the study of two possible DAN architectures, namely the Proxy-based and the Router-

based approaches.

B. KEY DESIGN CONSIDERATIONS

Several considerations went into the design of DAN framework. These

considerations were selected to ensure that the DAN framework architecture can achieve

the objectives in the most efficient manner, and are practical for widespread adaptation.

Though we started out with a large list of possible designs, we selected two for

implementation and testing.

The following sections list our key considerations for the DAN architecture.

1. No Additional Hardware

The DAN framework should not require deployment of additional hardware. At

the client end, the user should be able continue to use his existing computing device (e.g.,

laptop, PDA, cell phone) when operating in a DAN environment, just like in a non-DAN

environment. He shall not need to add any peripherals nor upgrade his existing device.

Also, DAN should not mandate the use of any additional hardware in the network for the

sole purpose of accommodating the DAN processing.

Likewise, the content or service provider shall not need to install additional

servers or modify existing setup to comply with the DAN framework.

2. Minimal Changes to Server and Client Software

Software modules may be required to be installed in existing hardware to effect

the DAN environment. Such software modules shall be compatible with the other

software applications already present in the hardware. In particular, it should not require
15

the client to switch to another browser nor use a different network protocol. The client

should be able to continue using the suite of software applications as before.

However, no software changes shall be required on the content or service

provider. The rationale for this is purely practical - it would be too expensive to expect

all the content providers to make any changes to their systems.

3. Little or No Human Intervention Required

In order to entice users to operate in the DAN environment and enjoy the resulting

benefits, the client interface should require as minimal a user intervention as possible.

Beside the occasional update to preferences or to override the default DAN settings; the

end user should not have to perform any additional tasks to operate in a DAN

environment. For example, when using a browser to surf the web, the user will continue

to perform the usual tasks to navigate to the desired URL, while the DAN modules will

work in the background to ensure that the content received is in tandem with the user's

preferences and device's capabilities.

4. Maximize Efficiency for Constrained Devices

The design should strive to maximize the efficiency of those constrained area

(e.g., mobile devices, wireless network), while ensuring that the overall efficiency of the

network.

One way of improving efficiency is to transfer tasks from resource constrained

devices to more capable devices. This way, the efficiency is improved since the more

capable devices will take less resources (e.g., time) to complete the tasks.

The other way to improve efficiency is to optimize network traffic.

5. Accommodation for Heterogeneous Devices

One of the objectives of the DAN is to address the mismatch between the content

delivered and the receiving client terminal. This mismatch is caused, in part, by the

increasing diversification of computing devices in the market, and compounded by the

indiscriminating behavior of the network, which is only concerned with routing the traffic

16

efficiently through the most optimal path and is indifferent to whether the data is usable

by the receiving terminal.

Since DAN is designed to address the problems posed by heterogeneous devices,

it is imperative that the client solution is designed to be portable across multiple

platforms. This consideration not only applies to commercially available computing

devices (e.g., PDA, notebook, cell phone), but also to military embedded system such as

weapon system. To achieve this, it is important to find the common ground among such

wide disparities of devices.

C. PROXY-BASED APPROACH

This section describes the Proxy-Based approach, as one of the two alternative

designs for the DAN framework architecture.

1. Overview of Proxy-Based Approach

The proposed proxy-based approach is modeled after the web architecture that is

commonly used today. In this approach, DAN will make use of a proxy-like agent, called

DAN Processing Unit or DPU, which is analogous to the web proxy that resides in the

local area network and operates at the application layer. It will be deployed to serve all

the clients within the intranet. The DPU needs not be a dedicated machine, and can co-

locate with existing machines on the network. All the client terminals will be registered

with the appropriate DPU within the intranet. The client's static device profile will also

be updated to the DPU during the registration.

17

I ~frm~ation Server A

Desk1l Client I

Processing Unit , .Informtion Server B

0 INTERNET

Cellphone Client

1nkfrmation Server C

Tablet Client

PDA Client

Information Server D

Figure 5. Schematic Diagram of Proxy-based Design

Instead of connecting to content providers (both internal and external) directly,

client terminals will forward the information request to the designated DPU. The DPU,

in turn, submits the information request to the information provider on the client's behalf.

This step ensures that the DPU receives the requested content directly from the

information provider, instead of the requesting client. Alternatively, the client may

submit the request to the information provider directly, but directs the result to be

returned to the DPU. However, such redirection may not be compatible with most

standards, such as the HTTP specifications. The dynamic device profile may be

transmitted to the DPU during this step.

Upon receipt of the information, the DPU then determines if the content is

appropriate for the requesting client, based on the client's device profile (both static and

dynamic) and user's preferences. It may need to repurpose the content in order to match

the content to the capability of the receiving client. Finally, it passes on the resultant

customized content to the client.

18

2. Salient Features of Proxy-Based Approach

A salient feature of this approach is it operates predominantly at the application

layer of the Open System Interconnection (OSI) stack. This ensures that the solution will

not modify the underlying protocols such as TCP/IP, and ensure the solution is

compatible with existing infrastructures that comply with the OSI standards. In addition,

it is unaffected by changes in the underlying protocols, such as the impending upgrade

from IPv4 to IPv6.

However, one drawback of working at the highest level of the OSI stack is the

trade off in efficiency. The DAN framework has to communicate with the client device

through message exchange. Hence, it will incur higher overheads as compared to

embedding such messages in the network protocols of the underlying layers.

Another salient feature is its close resemble to the web model. The use of proxy-

like intermediate node within its intranet means that the design will be compatible with

the security solutions employed in most networks.

3. Design Analysis of Proxy-Based Approach

a. Device Registration

The client device only needs to upload selected profile information to the

DAN framework prior to using it to retrieving information from the information server.

The assumption is that the device class is already pre-registered in the framework so that

most of the fixed and/or common profile information is already available within the

framework.

The client device can upload the profile information via any of the several

standards such as User Agent Profile Specification (UAProf) [5], Resource Description

Framework (RDF) [6] or by using open formats such as XML. Alternatively, this

information can also be embedded in the protocol used by the request for information

(e.g., embed this information in the HTTP protocol for web request).

19

b. Service Registration

Every service provider needs to register the service it is able to provide

with the DAN framework. This is important so that the DAN framework is able to

provide the client devices with an appropriate list of services available in the network and

the corresponding service provider. Client device needs this information when

submitting information request, so that the DPU knows exactly where to obtain such

services for capability negotiation and content re-purposing

c. Joining the Network

The initialization process involves probing for the DPU within the

intranet. This process is similar to the Dynamic Host Configuration Protocol (DHCP)

mechanism, where the client device will broadcast the search message until a DPU

responds with the required configuration information.

Upon receipt of the configuration information, the device will

automatically configure itself so to join the DAN framework. In this approach, the DPU

is assigned to be the dedicated proxy for the client device. Hence, this device setting will

remain valid until the client device leaves its existing networking environment (e.g.,

subnet).

The current DPU may also update the home DPU or a central registry on

the current location of the newly joined client device. This is to assist the framework in

locating the client device when the need arises.

d. Lookup Service

The functionality is subsumed under the "Joining Network" function.

e. Repurpose Content

The dedicated DPU will repurpose the content for the client device it is

assigned to. This assignment takes place when the client device joins the network. The

DPU may repurpose the content using the appropriate policies in its cache, or it may

download the policies it requires from service providers in the network.

20

f Survey Device/Network Status

The dedicated DPU will probe the client device for dynamic device profile

whenever necessary. This is done through message exchange with the client device. The

network probing is conducted in similar manner.

g. Session Initiation

When the client device initiates a request for information, this request will

be forwarded to the dedicated DPU. The DPU, in turn, re-route this request to the

appropriate information server. Thereafter, the DPU will serve as the client's proxy, and

liaise directly with the information server.

h. Capability Negotiation

The dedicated DPU performs this task in a similar manner to re-purposing

content.

D. ROUTER-BASED APPROACH

1. Overview of Router-Based Approach

This approach makes use of network routers to implement the DAN framework.

The gist of the idea is to leverage on the existing edge routers who are closest to the

intended information servers. Besides being able to reuse the existing infrastructure,

having the DAN functionality being administered close to the information server can

yield considerable improvement in network efficiency.

Unlike the proxy-based approach, the client device can send a request for

information directly to the intended information server. This network packet is specially

marked so that the information server's edge router can pick up this request. From the

additional information embedded in the packet, the edge router is able to extract the

information pertaining or leading to the detailed device profile of the requesting client. It

will contact the appropriate service providers to download the proxy codes required to

21

perform capability negotiation as well as content re-purposing for this specified client

device. In the meantime, the request is sent through to the specified information server.

When the information server returns the requested information, the data packets

are automatically routed to its edge router. The edge router will detect and extract the

relevant packets meant for the requesting client. These packets will be assembled to be

compared against the requesting client's device profile, and shall be re-purposed if any

mismatch is found. Finally, the edge router will encapsulate the resultant information in

the appropriate protocol, and route them directly to the requesting client.

DAN Information Server A
""Processing Unit

;eskto Client DAN
INTERNET Processing Unit

Information Server B

DAN

DACV1,ent 0.sgUi

CelNphote Client
Dlie

c rUit
Information

Server C
Tablet Ci entDA

Processin~g Unit IfrainSro
PDA Ce itNotebook Client

Figure 6. Schematic Diagram of Router-based Design

2. Salient Features of Router-Based Approach

Unlike the proxy-based approach which operates at the highest layer (i.e.

application layer), this approach targets the lower layers of the OSI stack (e.g., network

and transport layer). Instead of message exchange, the DAN framework can

communicate with client devices by embedding such messages in existing network

packets. This greatly improves the efficiency of the framework.

A drawback of this approach is that it requires modification to the network

protocol. The process of rectifying existing protocols and pushing for its widespread

22

adaptation can be very tedious and time-consuming. The slow adaptation of IPv6, given

its clear benefits, amply illustrates the difficulties involved.

Another salient feature is the DPU may be different for different information

requests. Since the edge router and information server form a paired relationship,

information requests going to different information servers will have to be serviced by

different edge routers. The operational implication is the framework has to re-search for

the correct DPU each time the client device submits an information request.

Theoretically, this task is inexpensive since the search mechanism is built into the

network protocol. This cannot be said for the other tasks to download proxy codes for

capability negotiation and content re-purposing.

3. Design Analysis of Router-Based Approach

This section analyses the design against the broad functional requirements.

a. Device Registration

Like the proxy-based approach, it is assumed that the common profiles of

the class of the client device already exist in the framework. Thus the client device only

need to upload dynamic profile information and user's preferences whenever appropriate

(i.e., submit an information request). Such information may only need to be uploaded

during submission of information request, and is embedded in the request's network

packets.

b. Service Registration

Every service provider needs to register the service it is able to provide

with the DAN framework. This is important so that the DAN framework is able to

provide the client devices with an appropriate list of services available in the network and

the corresponding service provider. Client device needs this information when

submitting information request, so that the DPU knows exactly where to obtain such

services for capability negotiation and content re-purposing.

23

c. Joining the Network

The initialization process requires the client device to query the DAN

framework for providers of specific services (e.g., providing proxy codes for capability

negotiation). This information is required by the client device when submitting

information request.

There is no need to configure the DPU information in the client device,

since such information is dynamic, depending on which information server is responding

to the information request.

d. Lookup Service

The DAN framework provides a generic lookup service to address the

client device's query for proxy services available in the framework.

e. Repurpose Content

The edge router needs to assemble the network packets returned by the

information server to reproduce the content prior to content repurposing, if necessary. It

may obtain the proxy codes required for this task from the designated service provider, as

specified in the client's information request. After the content is re-purposed, it will send

the modified content to the requesting client.

f. Session Initiation

The client device initiates a session with the information server, via the

edge router designated as the DPU, when it submits the first information request. It will

embed the proxy codes information, required by the DPU, in the first information request

of each session. This information is necessary for DPU to download the proxy codes

necessary to perform capability negotiation and content re-purposing

During the session, the client device will not need to re-send any of the

administrative information since they will be cached by the edge router. To avoid over

burdening the router's memory, time-out will be set for such caching. When time-out is

24

reached (i.e., the client device did not submit any request during the period equivalent to

the time-out), the edge router may purge such information from its cache.

g. Capability Negotiation

Like content repurposing, the edge router needs to re-assemble the

network packets returned by the information server. It will perform the capability

negotiation using the proxy codes downloaded from the specified service provider.

E. SUMMARY

So far, we have discussed the key considerations for the architecture of the DAN

framework. Based on these considerations, we developed two possible approaches (i.e.,

Proxy-based and Router-based) for the DAN framework. The two fundamental

differences between these approaches is the location of the DPU and the stack layer at

which the DAN functionality operates.

For the Proxy-based approach, the DPU is always located in the proximity of the

client device. It provides DAN functionality to the client device through application

layer services. This design is similar to the web proxy model used in many networks to

provide a centralized channel to the internet.

On the other hand, Router-based approach places the DPU closer to the

information server (e.g., web server), and operates more dominantly in the network

layers. The concept of this design is more radical than the proxy-based one. It requires

expansion of the network protocols as it targets at enhancing the network's inherent

capability.

In the next chapter, we shall present our prototype design. The design is

based on a hybrid of both approaches we discussed.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

IV. PROTOTYPE DEVELOPMENT

A. CHAPTER OVERVIEW

This chapter provides the insights to the design and development of the prototype

that is used to show the feasibility of the DAN framework. It continues with the

documentation of the flow of events that take place during the prototype demonstration.

B. PROTOTYPE OVERVIEW

1. Objective of Developing Prototype

The objective for developing the prototype is to demonstrate the viability of the

DAN framework. We intend to verify, through the prototype, that the proposed DAN

framework can enhance the network with the capabilities to match the contents and

capabilities of client devices in order to optimize resources of constrained devices and

network traffic.

During the design phase, we also encountered several technical issues that could

potentially impede the implementation of the DAN framework. This development work

will provide us an opportunity to better study these issues, and to try out various

solutions.

To facilitate the prototype development, we narrowed the scope of the DAN

framework to support web technology. The DAN framework is intended to support a

wide range of information exchange technologies or specifications. However, due to the

limited resources, it is not feasible for us to try to take on all the technologies at one time.

We chose the web technology since it is the predominant platform for information

exchange.

Lastly, it should be noted that the prototype does not amount to having a fully

qualified DAN framework. This prototype is only the beginning and a small step towards

realizing an operational DAN framework. The prototype will allow us to examine the

potential operational issues, explore alternative designs and solutions, and more

importantly, provide the test bed for future work.

27

2. Challenges for Client Device

The key challenge for the client device is to discover the right DPU, and self

configures the browser to connect to this DPU. Other challenges include updating the

DPU on its static and dynamic profile.

For the proxy-based approach, we can follow the same mechanism that internet

browser uses to search for proxy server dynamically. However, this mechanism cannot

be used for the router-based approach. The client device cannot use broadcast

mechanism for this purpose since the DPU-capable router, e.g., the server's edge router,

is usually not in the same broadcast domain.

In addition, the designated DPU changes for different information server. This

means that the DPU can only be determined when the user specifies the information

server (i.e. web site via Universal Resource Locator or URL). This requires a very

different setup from the regular browser, which normally has a fixed proxy setting

independent of the websites it navigates to.

The other challenge is the need to have the client device self configuring the

DPU into the browser. This emulates the capability of a fully implemented DAN

environment where DPU is automatically discovered and configured without end user

intervention. For desktop and notebook computers using Internet Explorer, this can be

done using the WININET library. However, such library does not exist for Pocket

Explorer on the WinCE/Pocket PC platform. Alternative ways have to be explored.

3. Challenges for DPU Prototype

The objective of a DPU is to able to intercept the HTTP requests and response so

that it can perform content repurposing based on the client device category.

Fundamentally, a DPU is an intelligent HTTP proxy that is able to automatically

transform, on the fly, the contents that are suitable for a requesting client device based on

the device capability. Although there are many open source HTTP proxies available that

we could reuse, there are some challenges in the design and implementation of the DPU

prototype. These include the discovery of the DPU location, dynamic download and

28

execute of DPU code to support specialized client devices, and the ability to support

session based content repurposing policy.

In our implementation, the location of a DPU is not fixed to support a particular

web server. Assigning a designed DPU close to a web server has its advantages. Having

a dedicated DPU, as opposed to a general DPU to support multiple web servers, allows

the DPU to be specialized to handle repurposing tasks that is tailored to the contents

served by the web server. In addition, locating the DPU close to the web server will

minimize unnecessary network traffic that cannot be processed by the client devices. In

order to support the discovery a DPU for each web server, some lookup mechanism must

be in place, which is similar to those used in the Jini architecture.

There are many devices available and it is impossible for the DPU to be able to

support all these devices. Hence, the challenge is to allow the client to specify the

software codes that can handle the repurposing task that is optimized for the capability of

the client device. Dynamically, the client should be to request a DPU to download and

execute it in real time.

Most HTTP proxies are designed to work with a single type of client, and in most

cases a desktop or a notebook computer is assumed. This model is insufficient to support

the task that a DPU is designed to execute. Some form of adaptation is required to make

a HTTP proxy to be able to determine the device type of an incoming HTTP request and

perform the appropriate repurposing task.

C. PROTOTYPE DESIGN

1. Design Overview

Based on the analysis of the requirements, we identified the three software

modules required for the prototype. They are the client browser, the Lookup Server and

the DPU.

The client browser provides the interface of the DAN framework to the end

user/device. It captures the information about the end user and device, and provides them

to the other agents in the DAN framework.

29

The Lookup Server helps to direct the client browser to the appropriate DPU. It

serves as the intermediate link between the client browser and the DPU.

The DPU is the nerve centre of a DAN network. It performs the essential DAN

functions (e.g., capability negotiation, content repurposing, retrieve policy and proxy

codes) based on inputs from the client browser.

The three modules -- the client browser, the Lookup Server, and the DPU -- work

together to provide the functionalities of the DAN framework. The flow of events and

the exchange of messages between these entities are illustrated in the sequence diagram

below.

Discovery of Lookup Server

DIsco•ry cf Lookup Server via Broedcasl I

Discovery rety with Lookup Server IP and Port Num n

Lookup for DPU for a particular URL

Lnokrp for DPU based on target web server URL i

R lIth the adirss of the DPU that serves the target web s•erver

Client connecting to the Web Server

Client itomY s DPU of Its device dlass

Cl ient sends ITIP F equeet vi. DPU

1 OPU forwards HTTP request 1o Web Server

Web Server replies with the H1T' responsa

DPU forward HTTP response to client after pnrcessing the vesponse based wn the policy for the cllent del-ce class

if-l---------- - -- -- -- -- -L- -- -- -- -- -- -- -- -- -- -----

SUpdata of Dynamic Client Status

I Client updates DPU of dyr ic parameters e.g. battery status)
I

% DPU adjumt the policy for trr client for future HTTP •re•p•nse

Figure 7. Sequence Diagram for DAN Framework Prototype

30

a. Lookup Server Discovery

When the client browser is launched, it will try to discover any Lookup

Server in the proximity by broadcasting a Discovery Message. When a Lookup Server

receives this message, it responds by sending a corresponding reply message with its IP

address and port number.

The client browser will use the information in the reply to configure its Lookup Server

settings. Subsequently, it will to use this Lookup Server whenever it needs to look up for

a DPU corresponding to the website it tries to navigate to. In the event when multiple

Lookup Servers respond (i.e., there are more than one Lookup Server in the proximity),

the client browser will configure itself to the first Lookup Server response message it

receives.

b. Lookup for DPU for a Particular URL

Before the client browser can navigate to the website specified by the user, it needs to

establish a communication session with the DPU that corresponds to this particular

website. The client device uses this session to provide administrative information to the

DPU, such as its static device profile, user preferences and processing policy. It also uses

this session to update the DPU with its dynamic profile such as battery status. The client

browser uses the Lookup Server to find the address of the DPU for the web server it is

targeting. This information can be derived from the URL entered by the user.

c. Client Connects to Web Server

Before the client sends the HTTP request, it first sends its static device

profile, user preferences and processing policy to the DPU identified earlier. This

information will be used by the DPU to process the contents returned by the web server.

With all the settings in place, the client browser finally sends out the HTTP request to the

DPU, which in turn, forward it to the web server.

31

The web server receives and processes the HTTP request like any regular

request. This ensures that the DAN framework will work with all existing web servers.

The web server then returns the requested content to the DPU.

Upon receiving the content, the DPU will perform capability matching,

and repurpose the content whenever necessary. The repurposed content is then returned

to the requesting client. As a result of the capability matching and content repurposing,

the client browser is able to use and utilize every bit of the returned content. Thus, there

is better utilization of resources for both the client device that receives and displays the

content, and the network that delivers the content.

d. Update of Dynamic Client Status

Besides the static device information, the client browser will also update

the DPU on its dynamic status such as the battery level. The DPU will re-apply the rules

accordingly. This enables the DAN framework to response to changing operational

climate.

2. Communication Messages

In order for the DAN client to communicate with a DPU, a new protocol is

developed. It facilitates the synchronization of events and activities between the client

and the DPU.

The information exchanges between a DAN client and DPU are based on

American Standard Code for Information Interchange (ASCII) text messages with each

field delimited by a comma. Below is a list of messages used in the DAN protocol.

a. Discovery Message

The Discovery Message is used by a DAN client to discover a Lookup

Server as well as a Lookup Server to response to a client lookup request.

32

Message Fields

Field Name Values/Type Description

Message Number 10 Unique message identifier.

Message Type 0 = Discovery Denotes whether this message is sent by a

Or client for the discovery of a Lookup Server
or a response sent by the Lookup Server in

1 = Reply response a client request.

Port Number 0-65535 The port number field is used by both a client
and a DPU to denote the port to listen for
incoming messages.

Server Name ASCII Text The Internet Protocol (IP) address of the
lookup server. This field is not required for a

discovery.
Table 3. Message Fields for the Discovery Message

b. DPU Lookup Message

With the location of the Lookup Server known, a client uses the DPU

Lookup Message to query a Lookup Server for the location of a DPU that supports a

particular website.

Message Fields

Field Name Values/Type Description

Message Number 100 Unique message identifier.

Target Web Server's ASCII Text The URL of web server that the client is
URL trying to connect.

Client Device Type 0 = Desktop The broad category that a client device

1= Notebook belongs to.

2= PDA

3 = Cell Phone

Client Device Model ASCII Text The model number of a client device.
Table 4. Message Fields for the DPU Lookup Message

33

c. DPU Update Message

The DPU Update Message is used by a Lookup Server in response to a

client's request for a DPU lookup. It is also used by the DPU to inform a client of

location and port number of the DPU that is hosting the specialized codes.

Message Fields

Field Name Values/Type Description

Message Number 200 Unique message identifier.

Message Source 0 = Lookup Server Denotes the originator of this message.

1 = DPU

Server Name ASCII Text The Internet Protocol (IP) address of a DPU.

Port Number 0-65535 The port number that a DPU is listening to.
Table 5. Message Fields for the DPU Update Message

d. Activate DPU Message

A DAN client uses the Activate DPU Message to inform a DPU of its

device type and model. The DAN client can also request the DPU to download a

specialized code host it at the DPU.

Message Fields

Field Name Values/Type Description

Message Number 300 Unique message identifier.

Specialized Code's ASCII Text The URL of specialized code that a client
URL requests for a DPU to download and execute.

Client Device Type 0 = Desktop The broad category that a client device

1 = Notebook belongs to.

2 = PDA

3 = Cell Phone

Client Device Model ASCII Text The model number of a client device.
Table 6. Message Fields for the Activate DPU Message

34

e. Status Update Message

The Status Update Message is used for a client to update a DPU about its

dynamic parameters. Currently, only the battery status is implemented.

Message Fields

Field Name Values/Type Description

Message Number 300 Unique message identifier.

Battery Status 0- 100 The percentage of power left for a client

device

Port Number 0-65535 The port number that a client is listening to.

Client Device Type 0 = Desktop The broad category that a client device

1 = Notebook belongs to.

2 = PDA

3 = Cell Phone

Client Device Model ASCII Text The model number of a client device.
Table 7. Message Fields for the Status Update Message

3. Client Design

This section discusses the design of the client browser. With the exception of the

WininetMgr class, the client browser is implemented using C# (C Sharp). Based on the

Microsoft .Net Framework, the client browser program is first compiled as Microsoft

Intermediate Language (MSIL), which is a processor-independent instruction codes.

Such programs are also known as managed codes. During runtime, the Common

Language Runtime of the .Net Framework converts the program in MSIL to native codes

and executes on the targeted operating system.

a. DocBrowser Class

The purpose of this class is to provide a customized Internet browser that

incorporates DAN functionalities. It can be used to browse websites in the World Wide

Web just like a regular web browser. In addition, user can turn on the DAN mode to use

the built-in DAN functionalities when browsing the Internet. For the purpose of this

35

study, we also developed a simulation feature to that can used to simulate the browser's

platform and battery status. The key attributes of the DocBrowser class is described

in the Table 8.

Attribute Name Description

axBrowserl This is a Web Browser control that is used to navigate the
World Wide Web and display web pages. It is similar to
the one used in Internet Explorer for displaying web
pages. Using this control allows us to intercept the event
between the user entering the URL and clicking the "Go"
button to start the navigation, and the browser initiating
the HTTP protocols to navigate to the specified website.

Such control is required for us to build in the DAN
functionalities.

FrmConnection This Form class is used for reading and setting the named
proxy settings.

meriuOptiors This menu option is a scaled down version of the "Internet

Options" found in the Internet Explorer. It allows user to

configure the proxy settings manually.

menuMode This menu option allows user to set the browser to operate
in the normal or DAN mode.

meriuBatt This menu option allows user to simulate the client device
battery status. The available options are "High",
"Moderate" and "Low".

mernuDevice This menu option allows user to simulate the device class
of the client device. The available options are "Desktop",
"Notebook", "PDA" and "Cellphone".

Table 8. Key Attributes of the DocBrowser Class

36

b. DiscoveryMgr Class

The purpose of this class is to search for the Lookup Server and the DPU,

and to update the DPU on client device's dynamic profile. The key attributes of the

D i s cove ryMgr class is described in the Table 9.

Attribute Name Description

CommsMgr This class is used to send and receive messages with the
DAN framework.

FindLookupServer () This method broadcasts a probing message to look for

the Lookup Server.

FindPDU () This method queries the Lookup Server for the DPU for

a given URL.

UpdateBatteryStatus () This method updates the current DPU on the current

battery status of the client device.

UpdateDeviceClass () This method updates the current DPU on the device

class of the client device. This method is used for
simulation purpose only.

OnDiscoveredDPU This event will trigger when a DPU is found. It will

pass the DPU address to the event handler.
Table 9. Key Attributes of the DiscoveryMgr Class

c. WininetMgr Class

The class provides an abstraction of the WININET library relevant for the DAN

framework. The actual working codes is programmed in C++ and compiled as a dynamic

link library (i.e., WininetMgr.dll). This class provides an interface to the WininetMgr.dll,

which runs in the unmanaged code realm. The key attributes of the WininetMgr class

are described in Table 10.

37

Attribute Name Description

EnableProxy () This method sets the proxy to be used for the browser. It

accepts the proxy IP address and port number. Since
Internet Explorer also uses the same library (i.e.,

WININET library), the proxy settings done here will also

affect other instances of the Internet Explorer on the
device.

DisableProxy () This method disables the proxy settings for the browser,

and the browser will connect to the web server directly.
Like EnableProxy, it settings will also affect other

Internet Explorer instances on the same device.

IsProxyUsed() This method checks the registry if the browser is

configured to use named proxy. It returns true if named
proxy is used, otherwise it returns false.

GetProxyAddr () This method reads the proxy settings in the registry and

returns the address of the named proxy. The proxy
address returned consists of the IP address and port
number.

Table 10. Key Attributes of the WininetMgr Class

d. FrmConnection Class

The purpose of this class is to allow user to read or set the named proxy

settings manually if he wishes to override the proxy settings discovered by the client

browser in DAN mode. It made use of the WininetMgr class to read and set the named

proxy settings into the registry.

The key attributes of the FrmConnection class is described in the

Table 11.

Attribute Name Description

WininetMgr The class is used to read and set the named proxy settings.

Table 11. Key Attributes of the FrmConnection Class

38

4. Lookup Server Design

The Lookup Server is the entity that facilitates the dynamic and loosely-

coupled interaction between a DAN client and a DPU. The location of a Lookup Server

is not made known to a client; instead the client has to send a broadcast message to

discover the Lookup Server, which is listening for discovery messages at port 16800. In

terms of the discovery process, this is very similar to a Dynamic Host Configuration

Protocol (DHCP) client discovering the server to obtain its IP address [7].

The Lookup Server also maintains a list of web sites and the corresponding DPUs

that are dedicated to service them. Upon startup, the Lookup Server reads an eXtensible

Markup Language (XML) file, DpuProxyLookup.xml, that provides persistent storage for

this mapping of web sites and DPU related information. The Document Type Definition

(DTD) for DpuProxyLookup.xml is shown below. Based on this definition, we can see

that DpuProxyLookup.xml contains one or more DpuProxy items and each DpuProxy

item is made of up a web server URL, its IP address and the port number that the DPU

will be listening. It is assumed that in a full Lookup Server implementation, the

DpuProxyLookup.xml file will be generated by additional processes associated with the

Lookup Server.

< ELEMENT DpuProxyLookup (DpuProxy)*>

<!ELEMENT DpuProxy (weburl,ipaddr,port)>

<!ELEMENT weburl (#PCDATA)>

<!ELEMENT ipaddr (#PCDATA)>

<!ELEMENT port (#PCDATA)>

Figure 8. DTD for DpuProxyLookup.xml

39

The Lookup Server is implemented using Java 2 Platform Standard Edition

version 5.0 (J2SE5.0). The main logic of the Lookup Server is embedded in the

LookupServer class. It is supported by the CommsManager class and the

ServerInf o class. The following are the detailed descriptions of the above mentioned

classes.

a. CommsManager Class

The CommsManager class provides the functionality for an application

to send and receive messages via User Datagram Protocol (UDP). The CommsManager

creates a UDP socket that is used for both sending and receiving of messages. To send a

message, the member method sendUDP () or sendBroadcast () is used and

CommsManager will take care of the rest to call the appropriate methods in the

j ava .net package to send the message.

To handle the receipt of messages, CommsManager will first create an

UDPMe s s s ageRe ceive r object (inherits from java. lang. Thread), which will

spawn a thread to listen for incoming UDP message. This is an important step as

DatagramSocket. listen () is a blocking call (i.e.; it will cause the software to

remain dormant until a new message is received at the UDP socket). Hence, without the

UDPMesssageReceiver object, the application that uses CorsManager will

"hang" until a new message is received. Upon receiving a UDP message,

UDPMesssageReceiver will call onReceive() in the

ReceivedMessageHandler interface. The class using the CommsManager will

have to provide the implementation for the onReceive () to handle the specifics of

how to handle the received messages. The key attributes of the CorsManager class

is described in Table 12.

40

Attribute Name Description

UDPMesssageReceiver The class is used to handle received messages for the

CommsManager. Its function is described in the few

paragraphs above.

StartUDPReceiver () This method is used to activate the

UDPMessageReceiver to listen to incoming

messages.

SendUDP () This method is used to send a UDP message to another
node by providing the destination IP address and port

number.

SendBroadcast () This method is used to send a broadcast message to a

particular port number.
Table 12. Key Attributes of the CommsManager Class

b. ServerInfo Class

The ServerInfo class represents each record for the mapping of a website URL to its

corresponding DPU related information (i.e. its IP address and port number). The key

attributes of the ServerInfo class is described in Table 13.

Attribute Name Description

getServerName() These methods retrieve and set the value of the

serverName attribute (URL of the server) of the

setServerName () ServerInf o class respectively.

getServerAddress() These methods retrieve and set the value of the

serverAddr attribute of the ServerInfo class

setServerAddress () respectively.

getPort () These methods retrieve and set the value of the port

setPorto attribute of the Server Inf o class respectively.

Table 13. Key Attributes of the ServerInfo Class

41

c. LookupServer Class

The LookupServer class implements the logic and behavior of the

Lookup Server. During startup, the constructor of the LookupServer class reads from

a data file, DpuProxyLookup.xml, to build up a lookup table in memory via the

initializeDpuList () method. This lookup table is implemented using a

Hashtable object with the key as the URL of a web server and the value is a

ServerInfo object with the corresponding DPU information that supports the web

server. The Hashtable is used as the data structure as it allows quick reference to the

DPU information when a client requests for it by sending the URL of the web site that the

client wishes to connect. In addition, the constructor also creates an instance of the

CommsManrager class and starts the UDPMesssageReceiver object to listen at port

16800 for incoming messages.

As mentioned above, the LookupServer class also implements the

ReceivedMessageHandler interface by providing the implementation of the

onReceive () method. This method is called upon when the

UDPMessageReceiver receives an incoming message at port 16800. The key

attributes of the LookupServer class is described in Table 14.

42

Attribute Name Description

main () This method provides the entry point to the Lookup Server

application. It starts the application by creating an
instance of the LookupServer class.

InitializeDpuList () This method is called to populate the Hashtable with the
DPU related information stored in the
DpuProxyLookup.xml data file.

OnReceive () This method handles the behavior of the Lookup Server

when an incoming message is received. Responses to
messages are as follows:

" When it receives a Discovery Message (Type =

Discover), it will reply to the client with another
Discovery Message (Type = Reply) with the contents
of the Lookup Server's IP address and port number.

"* When a DPU Lookup Message is received, the
Hashtable of DPU information is consulted to check

whether it contains an entry based on the URL of the
web site sent in the received message. If it exists, it
will response with a DPU Update Message with the

supporting DPU's IP address and port number.
Otherwise, it will send the DPU Update Message with
IP address as "0.0.0.0" and port number as -1 to
denote that the Lookup Server does not know of the
DPU that is supporting the requested web site.

Table 14. Key Attributes of the LookupServer Class

5. DPU Design

The DPU consists of two main components, namely a DAN protocol handler and

a web proxy. The DAN protocol handler manages the message exchanges with a DAN

client and determines the policy used for content repurposing based on the client device

type. The web proxy intercepts HTTP requests and responses and performs the task of

content repurposing based on the determined policy.

In this prototype, the web proxy is based on the RabbIT Web Proxy version

2.0.35 [8]. It is a Java based web proxy that complies with HTTP version 1.1. Several

43

modifications are made to the RabbIT Web Proxy source codes to enable it to perform

content repurposing on images. Details on the modifications are documented in Section

C, Prototype Implementation.

The policies for content repurposing focus only on images. For the purpose of

this prototype, we have three policies, namely the Full Image, Low Resolution Image and

No Image policies. Based on the device type, the DAN protocol handler will determine

the policy using the following mapping.

Device Type Policy

Desktop, Notebook Full Image

PDA Low Resolution Image

Cell Phone No Image

Table 15. Mapping for Device Type to Policy

In addition, dynamic parameters (such as battery level) from the client devices are

also used as factors to determine policies. For example, if the battery level is lower than

the threshold, the following policy for each client devices type will be enforced.

Device Type Policy

Desktop, Notebook Low Resolution Image

PDA No Image

Cell Phone No Image

Table 16. Policy for Device Type when the Battery Level is Below Threshold

Similar to the Lookup Server, the DAN protocol handler is implemented using

J2SE5.0. It is implemented as part of the DanProcessingUnit class. In addition, the

DanProcessingUnit class also loads and executes the RabbIT Web Proxy Java

classes upon startup. The following are the detailed descriptions of the classes involved,

which include the JarClassLoader class, PolicyInfo class and

PolicyManager class.

44

a. JarClassLoader Class

The JarClassLoader class handles the loading and execution of a

Java Archive (JAR) file. It allows the loading of remote Java classes and resources that

are packed in a JAR file and stored in a remote server.

The source codes used in this class are based on the example used in the lesson on using

JAR-related APIs from the Java Tutorial [9]. It is extended to include a function to

extract a file from JAR file. The key attributes of the JarClassLoader class is

described in Table 17.

Attribute Name Description

GetMainClassName () This method determines the class from the classes

packed in a JAR file that contains the static main ()
function. It uses the information from the manifest file

that is packed together with the JAR to determine this.

InvokeClass () This method invokes the static main () function by

supplying the name of the main class and an array of
arguments that is recognized by the main () function.

ExtractFileFromJar () This method extracts a file that is packed in a JAR file.

Table 17. Key Attributes of the JarClassLoader Class

b. PolicyInfo Class

The PolicyInfo class represents the policy that will be applied for a particular client

device. It stores the policy, in the form of a text string, as well as the client IP address.

The key attributes of the P o 1 i cy I n f o class is described in Table 18.

Attribute Name Description

getPolicy () These methods retrieve and set the value of the policy

attribute of the PolicyInf o class respectively.setPolicy ()

getClientAddress() These methods retrieve and set the value of the

clientAddr attribute of the PolicyInfo class
setClientAddress (respectively.

Table 18. Key Attributes of the PolicyInfo Class
45

c. PolicyManager Class

The PolicyManager class manages the content repurposing policies

for all client devices that are connected to the DPU. The PolicyManager maintains a

policy table of client IP addresses and the corresponding policies. This table is updated

whenever the client sends the Activate DPU Message to the DPU to the DPU Admin Port

19800. Based on the client device type, the PolicyManger will assign the appropriate

policy (based on the mapping in Table 15) and update the policy table accordingly. In

addition, the Status Update Message also triggers the PolicyManager to update the

policy table. In this case, the client device updates its battery status and if it falls below

at pre-defined threshold (currently it is set at 40%), the PolicyManager change the

policy for the client based on the mapping defined on Table 16.

The PolicyManager also plays a key role in conveying the policy

information to the RabbIT Web Proxy. As the RabbIT Web Proxy is running in another

process, some form of inter process communications means is required to inform the

RabbIT Web Proxy of the policy for the clients that may connect to it. Instead of setting

up an extensive infrastructure for inter process communications, we used an XML file to

exchange the policy related information between the PolicyManager and the RabbIT

Web Proxy. For each update to the policy table, the PolicyManager will generate a

similar set of information and write to the policies.xml file. When the RabbIT Web

proxy needs to decide on the policy to use, it will read the policies.xml file to extract the

required information. The DTD for the policies.xml file is shown below. The

policies.xml file contains one or more policy items and each policy item is made of up a

client IP address and the description of the policy.

<!ELEMENT policies (policy)*>

<!ELEMENT policy (address, description)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT description (#PCDATA)>

Figure 9. DTD for Policies.xml

46

The key attributes of the P o l i cyMan age r class is described in Table 19.

Attribute Name Description

UpdatePolicy () This method updates the policy table using the client
device type and IP address as the input.

UpdateDynamicPolicy () This method determines and updates the policy table

based on the dynamic parameters such as the battery
level of the client device.

WritePoliciesToFile () This method copies the policy table and writes it to the

I policies.xml file.

Table 19. Key Attributes of the PolicyManager Class

d. DanProcessingUnit Class

The DanProcessingUnit class is the main class for the DPU. It

contains the static main () function that bootstraps the application. The maino function

initializes the classes that the DanProcessingUnit references (PolicyManager

class and CommsManager class) through its constructor and starts to load and execute

the RabbIT Web Proxy. Once the RabbIT Web Proxy is loaded, the URL of the RabbIT

Web Proxy codes and the port number for the proxy (default port number is 9666) are

added to a data structure called the active proxy table. This table keeps track of all

instances of RabbIT Web Proxy that are active in memory.

At any given time, there is at least one instance of the RabbIT Web Proxy

running. Client devices can, through the Activate DPU Message, request the DPU to

download a copy of specialized RabbIT codes to handle the specifics that are unique to a

particular class of devices. The URL of the code is specified by the client in the

Specialized Code's URL field of the Activate DPU Message. On receiving this message,

the DanProcessingUnit class will utilize the JarClassLoader class to download

the codes from the specified URL. If the URL is valid, the JarClassLoader class

will execute the downloaded codes, causing another instance of the RabbIT to execute

and listen on another port for web requests and responses. Once the new instance is

executing, the DanProc e s sin gun it class will add another entry to the active proxy

table with the URL of the specialized codes and the new port number as inputs. In

47

addition, the DanProcessingUnit class will send a DPU Update Message to inform

the client to connect to this new RabbiT Web Proxy instance for its subsequent web

requests. However, this could be a potential security flaw as the client can send a URL

that contains malicious codes and cause the DPU to download and execute such codes.

Therefore, in the future implementation of the DPU, security measures must put in place

to prevent this from happening.

Similar to the Lookup Server, the DanProcessingUnit class utilizes the

CormsManager class to send and receive messages from client devices. It also

implements the ReceivedMessage Handler interface by providing the

implementation of the onReceive () method. This method is invoked when an

incoming message arrives at DPU Admin Port 19800. The key attributes of the

DanProcessingUnit class is described in Table 20.

48

Attribute Name Description

main () This method provides the entry point to the

DanProcessingUnit application. It starts the

application by creating an instance of the
DanProcessingUnit class.

loadApp() This method activates the JarClassLoader class to

download and execute an application from the specified
URL.

addProxy () This method adds an entry to the active proxy table.

onReceive () This method handles the behavior of the DPU when an

incoming message is received. Responses to messages are

as follows:

a. When the Active DPU Message is received, it will
check if the URL of the requested codes exists in
the active proxy table. If it does not exist in the

active proxy table, the codes will be downloaded
from the URL and executed. Next, the
DanProcessingUnit class will send a DPU

Update Message to inform the client to connect to
this new RabbIT Web Proxy instance for its
subsequent web requests. Once this is completed,

the PolicyManager is activated to determine

the policy for the client device.

b. When the DPU receives the Status Update
Message, it will activate the PolicyManager to

update the policy based on the dynamic parameter
sent by the client device.

Table 20. Key Attributes of the DanProcessingUnit Class

49

D. IMPLEMENTATION DETAILS

1. Implementing DAN Browser

As a client to a DAN network, we developed a customized web browser, we call

the DAN browser, that performs various functions required by the DAN framework. In

order to develop the prototype to facilitate the demonstration of the DAN framework

quickly, we tried to reuse existing software components as much as possible. Therefore,

instead of developing a web browser from scratch, we make use of the Web Browser

control that is used in the Internet Explorer. We have also considered using open source

browsers, but found that the learning curve will take too long to fit our schedule.

For the prototype, we used the Microsoft .Net Framework (specifically, C#

language) to develop the client application (i.e., DAN browser). As such framework

works on managed code, the corresponding Windows Forms can only host Windows

Forms controls (i.e., derived classes of System. Windows.Forms.Control).

Unfortunately, the Web Browser is an ActiveX control that is developed in earlier

platforms using unmanaged code. In order to use the control in a managed code

environment, it will need to be embedded in a Windows Forms control class (i.e.,

System. Windows. Forms. AxHost class). This wrapper class acts as a host for the

ActiveX control so that it exposes a similar interface as a regular control class.

The Web Browser control can hence be converted to a regular control class by

using the control wrapper toolkit, Aximp.exe tool, which is included in the .Net

Framework SDK. To do this, we need to convert the entire type library of the Web

Browser control (i.e., shdocvw.dll) using the command below. The output of Aximp.exe

is a set of binary files that contains the metadata and control implementation for the types

defined within the original type library. In this case, it is easier to assume that the

converted control is contained in the newly produced type library file Axshdocvw.dll.

aximp c: \winnt\system32\shdocvw.dll

50

In order to use the converted control in the windows form, we need to add a

reference to the newly created type library, and initialize an instance of the control. The

code excerpt is given below.

using AxSHDocVw;

namespace DANBrowser

private AxSHDocVw.AxWebBrowser axWebBrowserl;

this.axWebBrowserl = new AxSHDocVw.AxWebBrowser(;

((System.ComponentModel. ISupportInitialize)
(this.axWebBrowserl)) .BeginInit();

this.axWebBrowserl.Enabled = true;
this.axWebBrowserl.Location : new System.Drawing.Point (16, 24);
this.axWebBrowserl.OcxState =

((System.Windows.Forms.AxHost.State)
(resources.GetObject("axWebBrowserl.OcxState")))

this.axWebBrowserl.Size = new System.Drawing.Size(528, 150);
this.axWebBrowserl.TabIndex = 0;

this.Controls.Add(this.axWebBrowserl);

((System.ComponentModel. ISupportInitialize)
(this .axWebBrowserl)) .EndInit);

Finally, the Web Browser control can be used to navigate to any website. The

code excerpt is given below.

//default arguments for Navigate method.
object argl = 0; object arg2 = ""; object arg3 = ""; object arg4

//navigate to URL/FilePath entered
this.axWebBrowserl.Navigate(textURL.Text, ref argl, ref arg2, ref

arg3, ref arg4);

51

The Web Browser exposes a comprehensive range of events. These events are

useful to moderate the behavior of the browser, as well as checking the status of the

navigation. The following code excerpt shows the events that are used in this

implementation.

//Add Handler for Title Change event
this.axWebBrowserl.TitleChange += new

AxSHDocVw.DWebBrowserEvents2_TitleChangeEventHandler(axWebBrowserlTitl
eChange);

//Add Handler for StatusBar change event
this.axWebBrowserl.StatusTextChange += new

DWebBrowserEvents2_StatusTextChangeEventHandler(axWebBrowserlStatusTex
tChange);

//Add Handler for Progress Update event
this.axWebBrowserl.ProgressChange += new

DWebBrowserEvents2_ProgressChangeEventHandler(axWebBrowserlProgressCha
nge);

//Add Handler for Handle Created event
//To interact with the newly created Browser control, so that we can
//use it to navigate to start page

this.axWebBrowserl.HandleCreated += new
EventHandler(axWebBrowserlHandleCreated);

//Add Handler for Before Navigate Event
this.axWebBrowserl.BeforeNavigate2 += new

DWebBrowserEvents2_BeforeNavigate2EventHandler(axWebBrowserlBeforeNavi
gate2);

private void axWebBrowserlHandleCreated(object sender, EventArgs args)

try

//Navigate to Start Page
this.buttonGoClick(buttonGo.Text, EventArgs.Empty);

//Remove EventHandler since it is no longer needed
this.axWebBrowserl.HandleCreated -= new

EventHandler(axWebBrowserl HandleCreated);

catch (Exception e)

this .ShowErrorMessage (e);

private void axWebBrowserlTitleChange(object sender,
DWebBrowserEvents2_TitleChangeEvent arg)

//Display the Web Browser title on status bar
this.Text = "DAN Browser - " + arg.text;

52

private void axWebBrowserl StatusTextChange(object sender,

DWebBrowserEvents2_StatusTextChangeEvent e)

if ((e.text == null) II (e.text :"

updateStatusText("Done");

else

updateStatusText(e.text);

private void axWebBrowserl ProgressChange(object sender,

DWebBrowserEvents2_ProgressChangeEvent e)

if (e.progress < e.progressMax)

double progress = ((double)e.progress /
(double)e.progressMax) * 100.0;

this.statusProgress.Text = ((int)progress) .ToString() +
percent";

else //already completed
this.statusProgress.Text = "Completed";

private void axWebBrowserl BeforeNavigate2(object sender,

DWebBrowserEvents2_BeforeNavigate2Event e)

if (e.pDisp == axWebBrowserl)
MessageBox.Show("Before Navigate Event - + e.uRL, "hi",

MessageBoxButtons.OK,

MessageBoxIcon. Information);

else

MessageBox.Show("Block PopUp " + e.uRL, "hi",

MessageBoxButtons.OK,

MessageBoxIcon. Information);

e.cancel = false;

2. Configuring Proxy for DAN Browser

Since the DAN browser uses the Web Browser control, we use the WININET API

to access and modify the registry settings for the browser. The Web Browser control

shares the same registry entries as the mainstream Internet Explorer. Therefore, it should

be noted that any changes to the settings performed through the DAN browser will affect

any Internet Explorer running on the host, and vice versa. The APIs used to configure the

53

proxy settings for the DAN browser, written in C++, are shown in the header file listing

below.

//Header File

#ifndef INTERNETOPTIONH

#define INTERNETOPTION H

#include "stdafx.h"

#include <windows.h> //required to avoid compilation error with

wininet.h

#include <wininet.h>

//#include <iostream>

//using namespace std;

class InternetOption I

private:

unsigned long nSize; // size of INTERNETPERCONNOPTIONLIST;

INTERNET PER CONNOPTIONLIST queryList; //store the various

options (i.e., queryOptions)to be queried.
INTERNETPERCONNOPTION queryOption[51; //store settings

information

bool queryInternetSettings(; //to refresh the values in
queryOptions

unsigned long getConnectionFlag(;

public:

InternetOption();

-InternetOption();

bool enableDirectProxy(TCHAR proxyAddr[], TCHAR bypassAddr[]);

bool disableDirectProxy(;

bool isNamedProxyConnection();
LPTSTR getByPassURL(;

LPTSTR getProxyIP();
void showCurrentConnSettings(); //get the connection settings -

may need enum values

};
#endif

Like the Web Browser control, we need to perform some conversion to allow the

WININET API related codes to run the managed environment. To do this, we wrapped

these codes in the dynamic link library, and later access the exposed functions through

the Platform Invoke feature provided with .Net Framework. The following code excerpt

shows how we wrapped the codes in a dynamic link library.

54

#ifdef WININETMGR EXPORTS

#define WININETMGRAPI extern "C" declspec(dllexport)

#else

#define WININETMGRAPI _declspec(dllimport)

#endif

//Includes...

#include "InternetOption.h"

WININETMGRAPI bool enableProxy(char proxyAddr[], char bypassAddr[]

WININETMGR API bool disableProxy(void);

WININETMGR API bool getProxyAddr(LPTSTR proxyAddr);

WININETMGRAPI int isProxyUsed(void);

#include "stdafx.h"

#include "WinINETMgr.h"

#include "InternetOption.h"
#include <string>

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul reason for call,
LPVOID ipReserved

switch (ul reason for call)
I
case DLLPROCESSATTACH:

case DLL-THREADATTACH:

case DLL THREAD DETACH:

case DLL-PROCESSDETACH:

break;
I

return TRUE;

WININETMGR API bool enableProxy(char* proxyAddr, char* bypassAddr)

InternetOption inet;
return inet.enableDirectProxy(proxyAddr, bypassAddr);

WININETMGRAPI bool disableProxy(void)

InternetOption inet;

return inet.disableDirectProxy();

WININETMGRAPI bool getProxyAddr(LPTSTR proxyAddr)

InternetOption inet;
int len = strlen((char *) inet.getProxyIP));
lstrcpyn(proxyAddr, inet.getProxyIP(, len + 1);

return true;

55

WININETMGR API int isProxyUsed(void)

InternetOption inet;
if (inet.isNamedProxyConnectionG)

return 1;
else

return 0

Finally, to access the WININET API functions from the DAN browser form, we

created a class (i.e., WinInetMgr) to import the functions from the DLL. The

following code excerpt is extracted from win inetmgr class.

using System.Runtime. InteropServices;
using System. Text;
using System;

namespace DANBrowser

/7/ <summary>
/7/ Summary description for WininetMgr.
/7/ </summary>
public class WininetMgr

[DllImport("WininetMgr.dll")]
public static extern bool enableProxy(String proxyAddress,

String localAddress);

[DllImport("WininetMgr.dll")]
public static extern bool disableProxy(;

[DllImport("WininetMgr.dll")]
public static extern bool getProxyAddr(StringBuilder

proxyAddr);

[DllImport("WininetMgr.dll")]
public static extern int isProxyUsed(;

56

4. Modifications to the RabbiT Web Proxy

In order the support the requirements of a DPU, the following code changes were

made to the original RabbIT Web Proxy source codes.

a. New Input Argument to Specify the Port for the RabbIT Web

Proxy

The original RabbIT Web Proxy obtains the proxy port number from a

configuration file. This presents a problem for the DanProcessingUnit class to

execute another instance of the RabbIT Web Proxy as it will read from the same

configuration file. Hence, there is a need to customize the rabbit proxy.Proxy

class from the rabbit. proxy package, which is the main class for the RabbIT Web

Proxy. First, the main () function is modified to take in an addition argument "-p" or

"--port" to specify the proxy port number. This value is stored in the static variable

port.

public static void main(String[] args)

else if (args[i] .equals("-p") I 1
args[i] .equals(.--port"))

i++;

if (args.length > i)

port = Integer.parseInt (args[i]);

else

logError(FATAL, "No port specified");
System.exit (-1);

Next, the openSocket () function in the Proxy class is modified so

that it will take in the value stored in the port variable if the port argument is specified

when the RabbIT Web Proxy is executed. Otherwise, it will read from the configuration

file to obtain the proxy port number.

57

protected static void openSocket()
I

int tport;

if (port == -1)

tport = Integer.parseInt (config.getProperty
(Proxy.class.getName(, "port", "9666").trim());

else
tport = port;

try

port = tport;

accepting = false;

closeSocket (;
ss = new ServerSocket (port);
accepting = true;

catch (IOException e)

logError(FATAL, "Failed to open serversocket on port " +

port);
System.exit (-1);

b. New Image Handler Classes

The RabbIT Web Proxy uses the rabbit. handler. ImageHandler

class to handle images downloaded from web servers. It utilizes an external application,

ImageMagick [10], to reduce the quality of the image so as to minimize on the

downloading time for images.

Several additions and modifications are made to the rabbit. handler

package to support the three image policies. To handle the Full Image policy, the

rabbit. handler. ImageHandler class is modified to disable the conversion

routine. This modification takes place in the setup () function where the doConvert

flag is set to false.

public static void setup(Properties prop)

config = prop;

doConvert = false;

58

A new class, rabbit. handler. LowQualitylmageHandler, is

created and added to the rabbit. handler package to support the Low Resolution

Image policy. In terms of the code structure and the main routine, the

rabbit.handler.LowQualityImageHandler is very similar to the

rabbit.handler.ImageHandler. The difference is only in the

convertImage () function. It makes use of the Java ImagelO classes to reduce to the

quality of image instead of the ImageMagick application. The advantage of using

ImagelO classes is that it eliminates the reliance of an external application that is

executed in another process via the Java Runtime object. The codes for the

cornvertImage () and the helper function compressJpegFile ()are shown below.

protected void convertImage() throws IOException

String qualityStr = config.getProperty("quality", STDQUALITY);
String entryName : Proxy.getCache() .getEntryName(entry.getId(,

false);

try

File oriFile = new File(entryName);
convertedFile = new File(entryName + ".cony");
compressJpegFile(new File(entryName),

convertedFile,
quality);

lowQualitySize = convertedFile.length(;
response.setHeader("Content-Type", "image/jpeg");
File oldEntry = new File(entryName);
oldEntry.delete();

if (convertedFile.renameTo (new File(entryName)))
convertedFile = null;

finally

if (convertedFile != null)

convertedFile.delete ;

size : lowQualitySize;
response.setHeader("Content-length", + size);
con.setExtraInfo("imageratio:" + origSize + "/" + lowQualitySize

+ "=" + ((float)lowQualitySize / origSize));

contentstream.close();
contentstream = new FileInputStream(entryName);

59

convertedFile = null;

private void compressJpegFile(File infile,
File outfile,
float compressionQuality)
throws IOException, FileNotFoundException

BufferedImage input = ImageIO.read(infile);

// Get Writer and set compression
Iterator iter = ImageIO.getImageWritersByFormatName("JPG");
if (iter.hasNext()

ImageWriter writer = (ImageWriter)iter.next(;
ImageWriteParam iwp = writer.getDefaultWriteParam(;
iwp.setCompressionMode(ImageWriteParam.MODE EXPLICIT);
iwp.setCompressionQuality(compressionQuality);

FileImageOutputStream output =
new FileImageOutputStream(outfile);

writer.setOutput(output);
IIOImage image = new IIOImage(input, null, null);
writer.write(null, image, iwp);
writer.dispose();
output.close();

In order to handle the client devices that use the No Image policy, the

rabbit. handler. BlocklmageHandler class is created. It is identical to the

rabbit. handler. LowQualitylmageHandler class with the exception of the

convert Image () function. This function replaces all images with a blank image file.

Below are the codes for the convertImage) and the helper function

copyJpegFile().

protected void convertImage() throws IOException

String entryName = Proxy.getCache() .getEntryName(entry.getIdo,
false);

String bimg = config.getProperty("blankimage", BLANKIMAGE);

try

File oldEntry = new File(entryName);
oldEntry.delete();

convertedFile = new File(bimg);

lowQualitySize = convertedFile.length(;

60

response.setHeader("Content-Type", "image/jpeg");

copyJpegFile(convertedFile,oldEntry);

catch(FileNotFoundException fnfe)

Proxy.logError(Proxy.ERROR, "Blank image -" + bimg +

"not found, is your path correct?");

catch(IOException ioe)

Proxy.logError(Proxy.ERROR, "10 Error in copying JPEG file"
+ ioe);

size = lowQualitySize;
response.setHeader("Content-length", "" + size);

con.setExtraInfo("imageratio:" + origSize + "7"
"+ lowQualitySize + "="

"+ ((float)lowQualitySize / origSize));

contentstream.close();

contentstream = new FileInputStream(entryName);

convertedFile = null;

private void copyJpegFile(File infile, File outfile)

throws IOException, FileNotFoundException

BufferedImage input = ImageIO.read(infile);

Iterator iter = ImageIO.getImageWritersByFormatName("JPG");
if (iter.hasNext()

ImageWriter writer = (ImageWriter)iter.next(;

FileImageOutputStream output =
new FileImageOutputStream(outfile);

writer.setOutput(output);

writer.write(input);

writer.dispose();
output.close();

C. Policy Handling

The rabbit. proxy. Connection class is responsible for the HTTP

connection from the web proxy to a client device or a web server. Therefore, this is the

class where the modification to handle polices takes place. As mentioned previously, the

61

PolicyManager class communicates the policies for each of the devices to the RabbIT

Web Proxy via the policies.xml file. In order to support that, XML processing

components are added to the rabbit proxy Connection class and they are

initialized in the constructor by calling the setupPolicyTable () function.

private void setupPolicyTable()

try

//setup XML components
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
factory.setIgnoringElementContentWhitespace(true);
builder = factory.newDocumentBuilder(;
policiesTable = new Hashtable<String, PolicyInfo>();

catch(ParserConfigurationException pce)

Proxy.logError(Proxy.ERROR,
"Problems initializing XML components..."
+ pce);

The policiesTable is a Hashtable that contains the IP address of a

client device as the key and the corresponding policy to be used as the value. The

updatePolicyTable () is added to the rabbit. proxy. Connection class to

facilitate the reading of the policies.xml file and update its contents to the

policiesTable.

private void updatePolicyTable(File infile)

Element childElement;
Node childNode;
Text value;
String pol,addr;

try

policiesTable.clear(;
Document doc = builder.parse(infile);

Element root = doc.getDocumentElement(;
NodeList children = root.getChildNodes(;

for(int i = 0; i < children.getLength); i++)

childElement = (Element)children.item(i);

childNode = childElement.getFirstChild();

62

value = (Text)childNode.getFirstChild(;
addr = value.getData() .trim(;

childNode = childNode.getNextSibling(;
value = (Text)childNode.getFirstChild(;
pol = value.getData() .trim(;

policiesTable.put(addr, new PolicyInfo(pol,addr));

catch(org.xml.sax.SAXException se)

Proxy.logError (Proxy.ERROR, "Problems parsing
+ infile.getPath() + +

se);

catch(IOException ioe)

Proxy.logError (Proxy.ERROR, "Problems parsing
+ infile.getPath() +

... + ioe);

When a HTTP request is received at the RabbIT Web Proxy, the

handleRequest () function will be activated. The following codes are added to the

handleRequest () function to incorporate the feature that process images differently

based on the policy for a particular client device.

The code first checks if the client is requesting an image (]peg, gif or png).

If an image is requested, the IP address of the client device is obtained from the s o cket

class. This IP address is then used as a key to query the policiesTable for the

required policy for this particular client device. If a policy is available, the appropriate

image handler function (either ImageHandler for Full Image policy,

LowQualitylmageHandler for Low Resolution policy or BlocklmageHandler

for No Image policy) will be eventually called to process the image.

public void handleRequest(HTTPHeader header)

RequestHandler rh = new RequestHandler(;

// ok get the handler for it.
if (rh.chandler == null) I

String ct = rh.webheader.getHeader("Content-Type");
if (ct != null)

ct = ct.toLowerCase(;

if (getMayFilter() &&

63

rh.webheader != null && ct != null)

if ((ct.equals("image/jpg"))
11 (ct.equals("image/jpeg"))
11 (ct.equals("image/gif"))
11 ct.equals("image/png"))

String clientAddr =

socket.getInetAddress() .getHostAddress() .trim(;
System.out.println("Connection from + clientAddr);

File policyFile : new File(polFile);
if (policyFile null)

updatePolicyTable(policyFile);

if (policiesTable.containsKey(clientAddr))

rh.chandler :
(Class)Proxy.handlers.get(

policiesTable.get(clientAddr) .getPolicy());
System.out.println("Image Handler : "

+ rh.chandler.getName(o;

else

rh.chandler :
(Class)Proxy.handlers.get(ct.toLowerCase ());

System.out.println("Image Handler : "
+ rh.chandler.getName();

else

rh.chandler :
(Class)Proxy.handlers.get(ct.toLowerCase ());

E. DEMONSTRATED CAPABILITY

We demonstrated the concept of the DAN framework using a prototype we

developed as part of the thesis requirements. In the demonstration, we showed how the

DAN framework can enhance the network by enabling it to differentiate the client

devices so as to deliver the optimal content to them. In addition, it is able to respond

appropriate to the device's dynamic profile as well.

64

1. Prototype Setup

The prototype demonstration was carried out in the Mobile and Wireless Devices

lab at the Naval Postgraduate School. The setup for the demonstration consists of the

DAN browser, the Lookup Server and the DPU. All these applications were hosted on

separate desktop terminals in the lab. These terminals are inter-connected by an Ethernet

local area network, which is linked to the internet.

The DAN browser is hosted on a Windows 2000 workstation. For the purpose of

the demonstration, it can be simulated to be hosted on other platforms like a PDA or a

cell phone. It was designed this way so to better demonstrate the capability of the DAN

framework. Take the case where the host is simulated as a cell phone which cannot

display images. If we use an actual cell phone for the demonstration, it will not display

the images even if it receives the images from the DAN framework. This will not happen

in the simulated cell phone, as the DAN browser is capable of displaying all the images it

receives.

Similarly, the Lookup Server and DPU are also hosted on Windows 2000

workstations. It should be noted that the platform does not matter since both are written

using Java, which can run on any operating systems that support Java Virtual Machine

(JVM). Using the Windows platform for the demonstration is simply a matter of

convenience. Both Lookup Server and DPU services must be started prior to the

demonstration.

To show that the DAN framework does not require any changes on the part of the

information server (i.e., web server), we used external web servers for the demonstration.

We selected Google and Answers.com websites for this demonstration.

The prototype DAN framework is shown below. The client device hosts the DAN

browser, and can be used to simulate as a cell phone, PDA or laptop. The Lookup server

and DPU are hosted on separate terminals.

65

""Google Website

Looku Server ,,http /www.gaoglecam)

PDA I/

Client Devi co

Cellphone

DAN ProcesSing Unit Arswerscom Website
(http:/lanswers corn)

Figure 10. Prototype Setup

2. Prototype Demonstration

The demonstration of the DAN framework prototype is broken into two

parts: 1) to demonstrate the ability to differentiate the end devices according to the static

profile submitted (e.g., device class), and 2) to demonstrate the ability to adapt to the

dynamic profile of the end device (e.g., battery status).

The DAN browser Graphical User Interface (GUI) (see figure 8) is shown below.

It can operate in normal or DAN mode. In normal mode, it behaves like any regular

browser. However, when DAN mode is switched on, it will interact with other agents in

the DAN framework to ensure that the content it received is optimize for its capability

and resources.

66

-'

A&oogle

Figure 11. The DAN Browser

To facilitate the demonstration, the DAN browser may be simulated as the various

device classes. The available options are Desktop, Notebook, PDA and Cell phone.

1~u

Figure 12. Options for Device Class

In addition, the DAN browser can also simulate the various battery levels to

demonstrate the ability of the DAN framework to respond to changes in the device's

dynamic profile.

67

Figure 13. Options for Battery Status

a. PDA in Normal Mode

The default setting for the DAN browser is to operate in the normal mode,

like a regular web browser. The simulated platform is PDA. The browser is used to

navigate to the Google website.

As expected, the browser displays the original webpage in its full entirety

(see figure below), as what you would get operating in the regular network.

UNANBowe - -ml

A ,ess ,ww, .qooa1e.oom L

GDone e

Figure 14. PDA in Normal Mode - Full Image

68

b. PDA in DAN Mode

Again, the browser is used to navigate to the Google website, except now The DAN

browser is set to operate in the DAN mode. The web page is the same as before, except

that the images are of lower resolution. The DAN framework is able to detect that the

device is PDA and applied the appropriate policy to the content requested by the client.

In this case, the DPU reduced the resolution of all the images associated with the returned

content.

Gog e

Figure 15. PDA in DAN Mode - Reduced Resolution Image

c. Cell Phone in DAN Mode

As before, the DAN browser is used to navigate to the Google website, but simulated to

run on a cell phone. The result is that all the images are stripped from the web page

displayed. The only reason this happen is because the DPU stripped all the images from

the returned content (see Figure 13). Again, this demonstrated that ability of DPU to

differentiate the static profile of the end device and customized the content accordingly.

69

Fil Tod& SI~imuat)

SGoogle

jD-one con Lte

Figure 16. Cell Phone in DAN Mode -No Image

d. Notebook in DAN Mode with High/Moderate Battery Level

The DAN browser is now set as a notebook with high or moderate level of

battery. It is used to browse to Answers.com website.

The webpage is displayed in its original state. In this instance, the DPU

did not attempt to compress the content since the end device is capable of displaying the

content returned by the web server.

Add~ess jansw"rS .Gom

Answers.
Teti me atjout: .

Figure 17. High/Moderate Battery Level - Full Image

70

e. Notebook in DAN Mode with Low Battery Level

The browser is now simulated to be running low on battery. When used to

display the Answers.com website again, it is noted that the images displayed are of lower

resolution.

This is because the DPU detects the low battery level of the client, and

tries to conserve power consumption of the client device by sending lower resolution

images.

Ad e~ 1 AaF1~'rS1D

Aswers. con

Te41 me about: .

Figure 18. Low Battery Level - Reduced Resolution Image

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

V. CONCLUSIONS

A. CHAPTER OVERVIEW

This chapter concludes our thesis and provides recommendations for further

research in related areas. It covers the lessons learnt and the issues that arose during the

course of our study and implementation of the prototype, followed by recommendations

for further research.

B. LESSONS LEARNT

The software development environments for handheld devices are at an early

stage of development. They lack the standardization and facilities needed for rapid

development of programs, especially if the programs have to deal with the system level

information. We faced significant challenges in developing the system and learnt a few

important lessons.

1. Setting Proxy for Pocket Internet Explorer

Current Pocket PC-based PDAs use Pocket Internet Explorer (IE) for web

browsing. This browser, unlike the mainstream Internet Explorer, does not provide a

suitable programming interface like the WININET API. Therefore, the only way to

programmatically configure the browser's proxy settings is to modify its registry entries

directly. However, this method is inherently risky, and should only be performed after

extensive study and testing to ascertain the appropriate entries to modify.

We carried out such testing on two iPAQ Pocket PC-based PDAs (115550 and

H4155), and successfully implemented the suggested method to programmatically

configure the Pocket IE's proxy settings.

The first step involves identifying the relevant registry entries. Unlike the

desktop Windows OS, the Pocket PC version does not provide any registry management

tools. We used a freeware download from the internet, called the PHM Registry Tool, for

this purpose. After some tedious tracking and testing, we finally managed to identify

73

those entries we needed to configure the proxy settings. These entries are tabulated

below.

Key Remarks

"Field = Value"

HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\ This is a unique ID used to denote a
ConnMgr\Destinations\The Internet endpoint of a connection. The term

"destination" is a misnomer since the
"Destld = (436EF144-B4FB-4863-AO41-F905A62C572]" endpoint may refer to either the source or

destination. The configuration may be
system-defined (e.g., Internet, My Work

HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\ Network, My ISP) or user-defined (e.g.,
ConnrMgr\Destinations\My Work Network HomeNet - see last destination entry).

"Destld = {18AD9FBD-F716-ACB6-FD8A-1965DB95B814}" For system-defined destination, the ID is
universal- same across all Pocket PC.

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
ConnrMgr\Destinations\My ISP This ID is used to represent destinations

in field which require such information.
"Destld = {ADBOBOOl-lOB5-3F39-27C6-9742E785FCD4}"

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
ConnMgr\Destinations\l-omeNet

"Destld = {D68567FF-CF68-2F9D-CO19-F9B9B9A5B554}"

HKEY LOCALMACHINE\SOFTWARE\Microsoft\ The "Provider" key consists of entries
ConnMgr\Providers\{EF097F4C-DC4B-4c98-8FF6- used by the Pocket PC to determine if
AEF805DCOE8E}\ITTP- {D68567FF-CF68-2F9D-CO 19- proxy should be used when connecting to
F9B9B9A5B554} the internet.

"Destld = (436EF144-B4FB-4863-AO41-8F905A62C572]" There are three types of "Provider" key -
"Enable = dword:O0000001" HTTP, SOCKS and NULL-CORP.
"Proxy = homeproxy:80"
"Srcld = {D68567FF-CF68-2F9D-CO19-F9B9B9A5B554}" HTTP refers to the settings used for web
"Type = dword:O0000001" connection. This entry only exists if the

PDA is configured to access internet. To
HKEYLOCAL_MACHINE\SOFTWARE\Microsoft\ConnMg configure the PDA to use proxy, the
r\Providers\{EF097F4C-DC4B-4c98-8FF6- proxy address should be entered in the
AEF805DCOE8E} \SOCKS- {D68567FF-CF68-2F9D-CO19- "Proxy" field.
F9B9B9A5B554}

SOCKS refers to settings for socket-based
"Destld = (436EF144-B4FB-4863-AO41-8F905A62C572]" communications. Similar to the HTTP
"Enable = dword:O0000001" entry, it is only available if the PDA is
"Proxy = homeproxy:80" configured to access internet.
"Srcld = {D68567FF-CF68-2F9D-CO19-F9B9B9A5B554]"
"Type = dword:00000004" NULL-CORP is the standard setting for

"My Work" endpoint..

Table 21. Registry Entry for Pocket IE (Select)

74

Next, we needed to write an application to access and modify these registry

entries. We used the Registry and RegistryKey class libraries from OpenNetCF. These

classes are very easy to use since they are similar to the desktop version available in the

.Net Framework. The other advantage of using these classes is that they are written in

C#, thus allowing us to write the entire GUI application in C#. The code excerpts for

setting the proxy is given below.

private void setProxy(string destID, string srcID, int protocolType,

string fullProxyName)

RegistryKey regKey;
const string subKeyNamePrefix =

"SOFTWARE\\Microsoft\\ConnMgr\\Providers\\{EF097F4C-DC4B-

4c98-8FF6-AEF805DC0E8E}\\";

string subKeyName;

//Determine the appropriate SubKey Name to use.

//E.g. Modem uses HTTP or null-corp

//HTTP uses "HTTP" prefix

//Sockets uses "SOCKS" prefix

switch(protocolType)
I

case PROTOCOLHTTP:
subKeyName = subKeyNamePrefix + "HTTP-" + srcID;

break;

case PROTOCOLSOCKS:
subKeyName = subKeyNamePrefix + "SOCKS-" + srcID;

break;
case PROTOCOLMODEM: //currently no action required for this

type.

default:

return;

//Change the proxy settings in the specified Sub-Key

regKey = Registry.LocalMachine.CreateSubKey(subKeyName);
if (regKey != null) //Ensure a valid registry key is returned
I

//Check if subkey already exists or newly created by

CreateSubKey().

if (regKey.ValueCount == 0)

//Need to create these values for newly created subkey.

//Did not include those values that are not used.

regKey.SetValue(VALUENAME SRCID, srcID);

regKey.SetValue(VALUENAME DESTID, destID);

regKey. SetValue (VALUENAME ENABLE, (int));

regKey.SetValue(VALUENAMETYPE, (int)protocolType);

75

//Update Proxy-Specific information (regardless of existing or
newly created key)

regKey. SetValue(VALUENAMEPROXY, fullProxyName);

regKey.Close(; //To flush the changes to the registry & close

handle in Win32 API
// regKey.Dispose(; //Is this needed? Not used in sample code.

Finally, we tested the application and found that it is able to configure the proxy

settings as required.

2. Dynamic Downloading and Execution of Codes

A key strength of Java is its ability to move the program code from one

computing devices to another. Once the code has been downloaded, it can be executed

without prior knowledge of the methods and attributes that a class contains. The key

enabler for this is the Reflection feature in Java.

The Java Reflection Application Program Interface (API) provides a means to

represents objects that are components of a class file and a mechanism to obtain

information about these components in a "safe and secure way" [11]. Therefore, within

the bounds of the security policy, we can make use of the Reflection API to create new

instances of a class, retrieve and change attributes of a class and most importantly, query

and invoke public methods exposed by a class.

In our implementation of the DPU, the JarCiassLoader class uses the

Reflection API to introspect and extract the main class from the list of class files contain

in a JAR file. Once the main class is identified, it makes use of the

method. invoke () function to execute the application.

C. KNOWN ISSUES

1. Configuring DAN Browser for Session-based DPUs

Currently, setting the DPU for a particular DAN browser affects every other

instances of DAN browser running on the host terminal. The effect is that other instances

76

of the DAN browser running on the same host terminal will all be configured to the same

DPU. This is not desirable as different web sites are supposed to have different

designated DPUs.

The cause of the problem is the sharing of the common registry entries by all the

instances of DAN browser running in the same host. To overcome this problem, we need

to establish session-based DPU settings, so that the settings for one browser will not

affect others.

2. Retrieving DPU Information for Web Links and Redirected Web
Sites

The current design and implementation of the browser is such that the DPU is

looked up each time the user clicks the "GO" button. However, there are other ways by

which a user is able to navigate to other web sites. For example, the user may click on

the hyperlink on the displayed web page, or the entered URL may re-direct to another

website (e.g., webpage moved to another website). The current implementation has not

catered for such scenarios. As a result, websites navigated in indirect ways will not be

updated with the designated DPU.

This problem may be overcome by intercepting the event when the user clicks on

the hyperlink, or when the webpage is redirected to another website, just like what the

browser currently does when the user clicks the "GO" button.

D. RECOMMENDATIONS

Due to time constraints, a number of areas were not examined in the

implementation of the prototype and are discussed in the following paragraphs.

1. Router-based DAN Protocol

The DAN protocol devised in the prototype is not sufficient to support the Router-

based DAN approach. As mentioned in Chapter 3, the router-based approach does not

require a client to know the location of the DPU that is handling the DAN processing and

the client connects directly to the intended information server. The router-based DAN

77

protocol will involve modifications of the contents of network packets. One possible

implementation of this protocol involves one of the routers along the route between a

client and an information server to identify itself as the DPU that will perform DAN

related processing. It intercepts packets designated for the client and performs the

required processing of the content before forwarding them to the client. Identification of

the DPU along the route is challenging as it involves modification of the existing routing

protocols.

2. DAN as a Web Service

The elements that make up the prototype include a client, a Lookup Server and

the DPU. Architecturally, this setup is very similar to that of a web service [12]. We can

extend the work in this thesis to make it compliant to the requirements of a web service.

Moreover, making DAN a web service may make it easier to interoperate with existing

and future systems.

3. Security in DAN Information Exchange

The information exchanges implemented are based on ASCII text. They are

prone to eavesdropping by an authorized observer. Some form of encryption may be

required to protect the confidentially of the messages. We can extend the study to use

Public Key Infrastructure (PKI) for secured exchanges. Moreover, we can also harness

the features of PKI to digitally sign the messages and downloaded codes to ensure their

integrity and authenticity.

E. SUMMARY

The heterogeneous computing environment has resulted in the current situation

whereby end-devices with differing compatibilities request for information from the same

source. Without taking into consideration and matching the capabilities of the end-

devices, the network may deliver content that cannot be processed by the devices. This

has resulted in the end-devices and networks spending unnecessary resources to deliver

and process unusable information. With that as the background, this project aimed to

78

develop architectures for a device-aware network that can match the capability of the

end-devices to the information delivered, thereby optimizing the network resource usage.

Two possible DAN architectures, namely the Proxy-based approach and the

Router-based approach, were proposed and studied in detail. In the Proxy-based

approach, an immediate entity known as a DPU, is introduced and is located in between

the route used for an end-device to communicate with an information server. It handles

requests to an information server on behalf of the end-device and processes responses

from the information server to match the end-device capability before forwarding them to

the end-devices. The other approach, the Router-based approach, uses the gateway router

of an information server to be the DPU. The gateway router intercepts packets

designated for the client and performs the required processing of the contents before

forwarding them to the client. The main objective is to prevent unusable information

from entering the wide area network.

In order to demonstrate the feasibility of the architecture, a prototype has been

developed. We have successfully demonstrated how the DAN framework can enhance

the network by enabling it to differentiate the client devices so as to deliver the optimal

content to them. In addition, it is able to respond appropriately to the device's dynamic

profile as well.

In conclusion, the objectives of this project were met. We hope that the results

and prototype developed from this project can provide a valuable reference for further

development of the DAN framework.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

LIST OF REFERENCES

1. "Jini Technology Architecture Overview",
http://www.sun.com/software/jini/whitepapers/architecture.html, last accessed on
February 2005.

2. Jan Newmarch, A Programmer's Guide to Jini Technology, APress, Berkeley,
California, 2000.

3. Gurminder Singh, Content Repurposing, IEEE Multimedia, vol. 11, no. 1, pp.20-
21, January-March 2004.

5. "Resource Description Framework", http://www.w3.org/RDF/, last accessed on
December 2004

6. "User Agent Profile Specification", Wireless Application Group User Agent
Profile Specification, Version 10-Nov- 1999

7. "RFC 2131 - Dynamic Host Configuration Protocol",
http://www.ietf.org/rfc/rfc2131 .txt, last accessed on March 2005

8. "RabbiT Web Proxy", http://rabbit-proxy.sourceforge.net, last accessed on March
2005

9. "Using JAR-related APIs from the Java Tutorial",
http://java.sun.com/docs/books/tutorial/jar/api/jarclassloader.html, last accessed
on February 2005

10. "ImageMagick", http://www.imagemagick.org, last accessed on February 2005

11. "Take an in-depth look at the Java Reflection API",
http://www.javaworld.com/javaworld/jw-09-1997/jw-09-indepth.html, last
accessed on March 2005

12. "W3C Working Group Note - Web Services Architecture",
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, last accessed on March
2005

13. Su Wen, Gurminder Singh, John Gibson and Arijit Das. Towards Device-Aware
Networks. The 12th Internation Conference on Telecommunications Systems
(ICTMS12). Monterey, California, July 2004.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Gurminder Singh
Naval Postgraduate School
Monterey, California

4. Assistant Professor Su Wen
Naval Postgraduate School
Monterey, California

83

